[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@18.117.12.223: ~ $
# Originally contributed by Sjoerd Mullender.
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.

"""Fraction, infinite-precision, real numbers."""

from decimal import Decimal
import math
import numbers
import operator
import re
import sys

__all__ = ['Fraction', 'gcd']



def gcd(a, b):
    """Calculate the Greatest Common Divisor of a and b.

    Unless b==0, the result will have the same sign as b (so that when
    b is divided by it, the result comes out positive).
    """
    import warnings
    warnings.warn('fractions.gcd() is deprecated. Use math.gcd() instead.',
                  DeprecationWarning, 2)
    if type(a) is int is type(b):
        if (b or a) < 0:
            return -math.gcd(a, b)
        return math.gcd(a, b)
    return _gcd(a, b)

def _gcd(a, b):
    # Supports non-integers for backward compatibility.
    while b:
        a, b = b, a%b
    return a

# Constants related to the hash implementation;  hash(x) is based
# on the reduction of x modulo the prime _PyHASH_MODULUS.
_PyHASH_MODULUS = sys.hash_info.modulus
# Value to be used for rationals that reduce to infinity modulo
# _PyHASH_MODULUS.
_PyHASH_INF = sys.hash_info.inf

_RATIONAL_FORMAT = re.compile(r"""
    \A\s*                      # optional whitespace at the start, then
    (?P<sign>[-+]?)            # an optional sign, then
    (?=\d|\.\d)                # lookahead for digit or .digit
    (?P<num>\d*)               # numerator (possibly empty)
    (?:                        # followed by
       (?:/(?P<denom>\d+))?    # an optional denominator
    |                          # or
       (?:\.(?P<decimal>\d*))? # an optional fractional part
       (?:E(?P<exp>[-+]?\d+))? # and optional exponent
    )
    \s*\Z                      # and optional whitespace to finish
""", re.VERBOSE | re.IGNORECASE)


class Fraction(numbers.Rational):
    """This class implements rational numbers.

    In the two-argument form of the constructor, Fraction(8, 6) will
    produce a rational number equivalent to 4/3. Both arguments must
    be Rational. The numerator defaults to 0 and the denominator
    defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.

    Fractions can also be constructed from:

      - numeric strings similar to those accepted by the
        float constructor (for example, '-2.3' or '1e10')

      - strings of the form '123/456'

      - float and Decimal instances

      - other Rational instances (including integers)

    """

    __slots__ = ('_numerator', '_denominator')

    # We're immutable, so use __new__ not __init__
    def __new__(cls, numerator=0, denominator=None, *, _normalize=True):
        """Constructs a Rational.

        Takes a string like '3/2' or '1.5', another Rational instance, a
        numerator/denominator pair, or a float.

        Examples
        --------

        >>> Fraction(10, -8)
        Fraction(-5, 4)
        >>> Fraction(Fraction(1, 7), 5)
        Fraction(1, 35)
        >>> Fraction(Fraction(1, 7), Fraction(2, 3))
        Fraction(3, 14)
        >>> Fraction('314')
        Fraction(314, 1)
        >>> Fraction('-35/4')
        Fraction(-35, 4)
        >>> Fraction('3.1415') # conversion from numeric string
        Fraction(6283, 2000)
        >>> Fraction('-47e-2') # string may include a decimal exponent
        Fraction(-47, 100)
        >>> Fraction(1.47)  # direct construction from float (exact conversion)
        Fraction(6620291452234629, 4503599627370496)
        >>> Fraction(2.25)
        Fraction(9, 4)
        >>> Fraction(Decimal('1.47'))
        Fraction(147, 100)

        """
        self = super(Fraction, cls).__new__(cls)

        if denominator is None:
            if type(numerator) is int:
                self._numerator = numerator
                self._denominator = 1
                return self

            elif isinstance(numerator, numbers.Rational):
                self._numerator = numerator.numerator
                self._denominator = numerator.denominator
                return self

            elif isinstance(numerator, (float, Decimal)):
                # Exact conversion
                self._numerator, self._denominator = numerator.as_integer_ratio()
                return self

            elif isinstance(numerator, str):
                # Handle construction from strings.
                m = _RATIONAL_FORMAT.match(numerator)
                if m is None:
                    raise ValueError('Invalid literal for Fraction: %r' %
                                     numerator)
                numerator = int(m.group('num') or '0')
                denom = m.group('denom')
                if denom:
                    denominator = int(denom)
                else:
                    denominator = 1
                    decimal = m.group('decimal')
                    if decimal:
                        scale = 10**len(decimal)
                        numerator = numerator * scale + int(decimal)
                        denominator *= scale
                    exp = m.group('exp')
                    if exp:
                        exp = int(exp)
                        if exp >= 0:
                            numerator *= 10**exp
                        else:
                            denominator *= 10**-exp
                if m.group('sign') == '-':
                    numerator = -numerator

            else:
                raise TypeError("argument should be a string "
                                "or a Rational instance")

        elif type(numerator) is int is type(denominator):
            pass # *very* normal case

        elif (isinstance(numerator, numbers.Rational) and
            isinstance(denominator, numbers.Rational)):
            numerator, denominator = (
                numerator.numerator * denominator.denominator,
                denominator.numerator * numerator.denominator
                )
        else:
            raise TypeError("both arguments should be "
                            "Rational instances")

        if denominator == 0:
            raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
        if _normalize:
            if type(numerator) is int is type(denominator):
                # *very* normal case
                g = math.gcd(numerator, denominator)
                if denominator < 0:
                    g = -g
            else:
                g = _gcd(numerator, denominator)
            numerator //= g
            denominator //= g
        self._numerator = numerator
        self._denominator = denominator
        return self

    @classmethod
    def from_float(cls, f):
        """Converts a finite float to a rational number, exactly.

        Beware that Fraction.from_float(0.3) != Fraction(3, 10).

        """
        if isinstance(f, numbers.Integral):
            return cls(f)
        elif not isinstance(f, float):
            raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
                            (cls.__name__, f, type(f).__name__))
        return cls(*f.as_integer_ratio())

    @classmethod
    def from_decimal(cls, dec):
        """Converts a finite Decimal instance to a rational number, exactly."""
        from decimal import Decimal
        if isinstance(dec, numbers.Integral):
            dec = Decimal(int(dec))
        elif not isinstance(dec, Decimal):
            raise TypeError(
                "%s.from_decimal() only takes Decimals, not %r (%s)" %
                (cls.__name__, dec, type(dec).__name__))
        return cls(*dec.as_integer_ratio())

    def as_integer_ratio(self):
        """Return the integer ratio as a tuple.

        Return a tuple of two integers, whose ratio is equal to the
        Fraction and with a positive denominator.
        """
        return (self._numerator, self._denominator)

    def limit_denominator(self, max_denominator=1000000):
        """Closest Fraction to self with denominator at most max_denominator.

        >>> Fraction('3.141592653589793').limit_denominator(10)
        Fraction(22, 7)
        >>> Fraction('3.141592653589793').limit_denominator(100)
        Fraction(311, 99)
        >>> Fraction(4321, 8765).limit_denominator(10000)
        Fraction(4321, 8765)

        """
        # Algorithm notes: For any real number x, define a *best upper
        # approximation* to x to be a rational number p/q such that:
        #
        #   (1) p/q >= x, and
        #   (2) if p/q > r/s >= x then s > q, for any rational r/s.
        #
        # Define *best lower approximation* similarly.  Then it can be
        # proved that a rational number is a best upper or lower
        # approximation to x if, and only if, it is a convergent or
        # semiconvergent of the (unique shortest) continued fraction
        # associated to x.
        #
        # To find a best rational approximation with denominator <= M,
        # we find the best upper and lower approximations with
        # denominator <= M and take whichever of these is closer to x.
        # In the event of a tie, the bound with smaller denominator is
        # chosen.  If both denominators are equal (which can happen
        # only when max_denominator == 1 and self is midway between
        # two integers) the lower bound---i.e., the floor of self, is
        # taken.

        if max_denominator < 1:
            raise ValueError("max_denominator should be at least 1")
        if self._denominator <= max_denominator:
            return Fraction(self)

        p0, q0, p1, q1 = 0, 1, 1, 0
        n, d = self._numerator, self._denominator
        while True:
            a = n//d
            q2 = q0+a*q1
            if q2 > max_denominator:
                break
            p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
            n, d = d, n-a*d

        k = (max_denominator-q0)//q1
        bound1 = Fraction(p0+k*p1, q0+k*q1)
        bound2 = Fraction(p1, q1)
        if abs(bound2 - self) <= abs(bound1-self):
            return bound2
        else:
            return bound1

    @property
    def numerator(a):
        return a._numerator

    @property
    def denominator(a):
        return a._denominator

    def __repr__(self):
        """repr(self)"""
        return '%s(%s, %s)' % (self.__class__.__name__,
                               self._numerator, self._denominator)

    def __str__(self):
        """str(self)"""
        if self._denominator == 1:
            return str(self._numerator)
        else:
            return '%s/%s' % (self._numerator, self._denominator)

    def _operator_fallbacks(monomorphic_operator, fallback_operator):
        """Generates forward and reverse operators given a purely-rational
        operator and a function from the operator module.

        Use this like:
        __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)

        In general, we want to implement the arithmetic operations so
        that mixed-mode operations either call an implementation whose
        author knew about the types of both arguments, or convert both
        to the nearest built in type and do the operation there. In
        Fraction, that means that we define __add__ and __radd__ as:

            def __add__(self, other):
                # Both types have numerators/denominator attributes,
                # so do the operation directly
                if isinstance(other, (int, Fraction)):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                # float and complex don't have those operations, but we
                # know about those types, so special case them.
                elif isinstance(other, float):
                    return float(self) + other
                elif isinstance(other, complex):
                    return complex(self) + other
                # Let the other type take over.
                return NotImplemented

            def __radd__(self, other):
                # radd handles more types than add because there's
                # nothing left to fall back to.
                if isinstance(other, numbers.Rational):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                elif isinstance(other, Real):
                    return float(other) + float(self)
                elif isinstance(other, Complex):
                    return complex(other) + complex(self)
                return NotImplemented


        There are 5 different cases for a mixed-type addition on
        Fraction. I'll refer to all of the above code that doesn't
        refer to Fraction, float, or complex as "boilerplate". 'r'
        will be an instance of Fraction, which is a subtype of
        Rational (r : Fraction <: Rational), and b : B <:
        Complex. The first three involve 'r + b':

            1. If B <: Fraction, int, float, or complex, we handle
               that specially, and all is well.
            2. If Fraction falls back to the boilerplate code, and it
               were to return a value from __add__, we'd miss the
               possibility that B defines a more intelligent __radd__,
               so the boilerplate should return NotImplemented from
               __add__. In particular, we don't handle Rational
               here, even though we could get an exact answer, in case
               the other type wants to do something special.
            3. If B <: Fraction, Python tries B.__radd__ before
               Fraction.__add__. This is ok, because it was
               implemented with knowledge of Fraction, so it can
               handle those instances before delegating to Real or
               Complex.

        The next two situations describe 'b + r'. We assume that b
        didn't know about Fraction in its implementation, and that it
        uses similar boilerplate code:

            4. If B <: Rational, then __radd_ converts both to the
               builtin rational type (hey look, that's us) and
               proceeds.
            5. Otherwise, __radd__ tries to find the nearest common
               base ABC, and fall back to its builtin type. Since this
               class doesn't subclass a concrete type, there's no
               implementation to fall back to, so we need to try as
               hard as possible to return an actual value, or the user
               will get a TypeError.

        """
        def forward(a, b):
            if isinstance(b, (int, Fraction)):
                return monomorphic_operator(a, b)
            elif isinstance(b, float):
                return fallback_operator(float(a), b)
            elif isinstance(b, complex):
                return fallback_operator(complex(a), b)
            else:
                return NotImplemented
        forward.__name__ = '__' + fallback_operator.__name__ + '__'
        forward.__doc__ = monomorphic_operator.__doc__

        def reverse(b, a):
            if isinstance(a, numbers.Rational):
                # Includes ints.
                return monomorphic_operator(a, b)
            elif isinstance(a, numbers.Real):
                return fallback_operator(float(a), float(b))
            elif isinstance(a, numbers.Complex):
                return fallback_operator(complex(a), complex(b))
            else:
                return NotImplemented
        reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
        reverse.__doc__ = monomorphic_operator.__doc__

        return forward, reverse

    def _add(a, b):
        """a + b"""
        da, db = a.denominator, b.denominator
        return Fraction(a.numerator * db + b.numerator * da,
                        da * db)

    __add__, __radd__ = _operator_fallbacks(_add, operator.add)

    def _sub(a, b):
        """a - b"""
        da, db = a.denominator, b.denominator
        return Fraction(a.numerator * db - b.numerator * da,
                        da * db)

    __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)

    def _mul(a, b):
        """a * b"""
        return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)

    __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)

    def _div(a, b):
        """a / b"""
        return Fraction(a.numerator * b.denominator,
                        a.denominator * b.numerator)

    __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)

    def _floordiv(a, b):
        """a // b"""
        return (a.numerator * b.denominator) // (a.denominator * b.numerator)

    __floordiv__, __rfloordiv__ = _operator_fallbacks(_floordiv, operator.floordiv)

    def _divmod(a, b):
        """(a // b, a % b)"""
        da, db = a.denominator, b.denominator
        div, n_mod = divmod(a.numerator * db, da * b.numerator)
        return div, Fraction(n_mod, da * db)

    __divmod__, __rdivmod__ = _operator_fallbacks(_divmod, divmod)

    def _mod(a, b):
        """a % b"""
        da, db = a.denominator, b.denominator
        return Fraction((a.numerator * db) % (b.numerator * da), da * db)

    __mod__, __rmod__ = _operator_fallbacks(_mod, operator.mod)

    def __pow__(a, b):
        """a ** b

        If b is not an integer, the result will be a float or complex
        since roots are generally irrational. If b is an integer, the
        result will be rational.

        """
        if isinstance(b, numbers.Rational):
            if b.denominator == 1:
                power = b.numerator
                if power >= 0:
                    return Fraction(a._numerator ** power,
                                    a._denominator ** power,
                                    _normalize=False)
                elif a._numerator >= 0:
                    return Fraction(a._denominator ** -power,
                                    a._numerator ** -power,
                                    _normalize=False)
                else:
                    return Fraction((-a._denominator) ** -power,
                                    (-a._numerator) ** -power,
                                    _normalize=False)
            else:
                # A fractional power will generally produce an
                # irrational number.
                return float(a) ** float(b)
        else:
            return float(a) ** b

    def __rpow__(b, a):
        """a ** b"""
        if b._denominator == 1 and b._numerator >= 0:
            # If a is an int, keep it that way if possible.
            return a ** b._numerator

        if isinstance(a, numbers.Rational):
            return Fraction(a.numerator, a.denominator) ** b

        if b._denominator == 1:
            return a ** b._numerator

        return a ** float(b)

    def __pos__(a):
        """+a: Coerces a subclass instance to Fraction"""
        return Fraction(a._numerator, a._denominator, _normalize=False)

    def __neg__(a):
        """-a"""
        return Fraction(-a._numerator, a._denominator, _normalize=False)

    def __abs__(a):
        """abs(a)"""
        return Fraction(abs(a._numerator), a._denominator, _normalize=False)

    def __trunc__(a):
        """trunc(a)"""
        if a._numerator < 0:
            return -(-a._numerator // a._denominator)
        else:
            return a._numerator // a._denominator

    def __floor__(a):
        """math.floor(a)"""
        return a.numerator // a.denominator

    def __ceil__(a):
        """math.ceil(a)"""
        # The negations cleverly convince floordiv to return the ceiling.
        return -(-a.numerator // a.denominator)

    def __round__(self, ndigits=None):
        """round(self, ndigits)

        Rounds half toward even.
        """
        if ndigits is None:
            floor, remainder = divmod(self.numerator, self.denominator)
            if remainder * 2 < self.denominator:
                return floor
            elif remainder * 2 > self.denominator:
                return floor + 1
            # Deal with the half case:
            elif floor % 2 == 0:
                return floor
            else:
                return floor + 1
        shift = 10**abs(ndigits)
        # See _operator_fallbacks.forward to check that the results of
        # these operations will always be Fraction and therefore have
        # round().
        if ndigits > 0:
            return Fraction(round(self * shift), shift)
        else:
            return Fraction(round(self / shift) * shift)

    def __hash__(self):
        """hash(self)"""

        # XXX since this method is expensive, consider caching the result

        # In order to make sure that the hash of a Fraction agrees
        # with the hash of a numerically equal integer, float or
        # Decimal instance, we follow the rules for numeric hashes
        # outlined in the documentation.  (See library docs, 'Built-in
        # Types').

        # dinv is the inverse of self._denominator modulo the prime
        # _PyHASH_MODULUS, or 0 if self._denominator is divisible by
        # _PyHASH_MODULUS.
        dinv = pow(self._denominator, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
        if not dinv:
            hash_ = _PyHASH_INF
        else:
            hash_ = abs(self._numerator) * dinv % _PyHASH_MODULUS
        result = hash_ if self >= 0 else -hash_
        return -2 if result == -1 else result

    def __eq__(a, b):
        """a == b"""
        if type(b) is int:
            return a._numerator == b and a._denominator == 1
        if isinstance(b, numbers.Rational):
            return (a._numerator == b.numerator and
                    a._denominator == b.denominator)
        if isinstance(b, numbers.Complex) and b.imag == 0:
            b = b.real
        if isinstance(b, float):
            if math.isnan(b) or math.isinf(b):
                # comparisons with an infinity or nan should behave in
                # the same way for any finite a, so treat a as zero.
                return 0.0 == b
            else:
                return a == a.from_float(b)
        else:
            # Since a doesn't know how to compare with b, let's give b
            # a chance to compare itself with a.
            return NotImplemented

    def _richcmp(self, other, op):
        """Helper for comparison operators, for internal use only.

        Implement comparison between a Rational instance `self`, and
        either another Rational instance or a float `other`.  If
        `other` is not a Rational instance or a float, return
        NotImplemented. `op` should be one of the six standard
        comparison operators.

        """
        # convert other to a Rational instance where reasonable.
        if isinstance(other, numbers.Rational):
            return op(self._numerator * other.denominator,
                      self._denominator * other.numerator)
        if isinstance(other, float):
            if math.isnan(other) or math.isinf(other):
                return op(0.0, other)
            else:
                return op(self, self.from_float(other))
        else:
            return NotImplemented

    def __lt__(a, b):
        """a < b"""
        return a._richcmp(b, operator.lt)

    def __gt__(a, b):
        """a > b"""
        return a._richcmp(b, operator.gt)

    def __le__(a, b):
        """a <= b"""
        return a._richcmp(b, operator.le)

    def __ge__(a, b):
        """a >= b"""
        return a._richcmp(b, operator.ge)

    def __bool__(a):
        """a != 0"""
        # bpo-39274: Use bool() because (a._numerator != 0) can return an
        # object which is not a bool.
        return bool(a._numerator)

    # support for pickling, copy, and deepcopy

    def __reduce__(self):
        return (self.__class__, (str(self),))

    def __copy__(self):
        if type(self) == Fraction:
            return self     # I'm immutable; therefore I am my own clone
        return self.__class__(self._numerator, self._denominator)

    def __deepcopy__(self, memo):
        if type(self) == Fraction:
            return self     # My components are also immutable
        return self.__class__(self._numerator, self._denominator)

Filemanager

Name Type Size Permission Actions
__pycache__ Folder 0755
asyncio Folder 0755
collections Folder 0755
concurrent Folder 0755
config-3.8-x86_64-linux-gnu Folder 0755
ctypes Folder 0755
curses Folder 0755
dbm Folder 0755
distutils Folder 0755
email Folder 0755
encodings Folder 0755
ensurepip Folder 0755
html Folder 0755
http Folder 0755
importlib Folder 0755
json Folder 0755
lib-dynload Folder 0755
lib2to3 Folder 0755
logging Folder 0755
multiprocessing Folder 0755
pydoc_data Folder 0755
site-packages Folder 0755
sqlite3 Folder 0755
unittest Folder 0755
urllib Folder 0755
venv Folder 0755
wsgiref Folder 0755
xml Folder 0755
xmlrpc Folder 0755
LICENSE.txt File 13.6 KB 0644
__future__.py File 5.03 KB 0644
__phello__.foo.py File 64 B 0644
_bootlocale.py File 1.76 KB 0644
_collections_abc.py File 25.49 KB 0644
_compat_pickle.py File 8.54 KB 0644
_compression.py File 5.21 KB 0644
_dummy_thread.py File 5.89 KB 0644
_markupbase.py File 14.26 KB 0644
_osx_support.py File 21.26 KB 0644
_py_abc.py File 6.04 KB 0644
_pydecimal.py File 223.31 KB 0644
_pyio.py File 90.99 KB 0644
_sitebuiltins.py File 3.04 KB 0644
_strptime.py File 24.68 KB 0644
_sysconfigdata__linux_x86_64-linux-gnu.py File 37.55 KB 0644
_sysconfigdata_d_linux_x86_64-linux-gnu.py File 37.29 KB 0644
_threading_local.py File 7.05 KB 0644
_weakrefset.py File 5.6 KB 0644
abc.py File 4.38 KB 0644
aifc.py File 32.04 KB 0644
antigravity.py File 477 B 0644
argparse.py File 93.76 KB 0644
ast.py File 18.78 KB 0644
asynchat.py File 11.06 KB 0644
asyncore.py File 19.62 KB 0644
base64.py File 19.92 KB 0755
bdb.py File 31.3 KB 0644
binhex.py File 13.63 KB 0644
bisect.py File 2.16 KB 0644
bz2.py File 12.26 KB 0644
cProfile.py File 6.85 KB 0755
calendar.py File 24.25 KB 0644
cgi.py File 33.15 KB 0755
cgitb.py File 11.81 KB 0644
chunk.py File 5.31 KB 0644
cmd.py File 14.51 KB 0644
code.py File 10.37 KB 0644
codecs.py File 35.81 KB 0644
codeop.py File 6.18 KB 0644
colorsys.py File 3.97 KB 0644
compileall.py File 13.36 KB 0644
configparser.py File 53.1 KB 0644
contextlib.py File 24.41 KB 0644
contextvars.py File 129 B 0644
copy.py File 8.46 KB 0644
copyreg.py File 6.97 KB 0644
crypt.py File 3.53 KB 0644
csv.py File 15.77 KB 0644
dataclasses.py File 48.8 KB 0644
datetime.py File 86.22 KB 0644
decimal.py File 320 B 0644
difflib.py File 82.09 KB 0644
dis.py File 20.09 KB 0644
doctest.py File 102.09 KB 0644
dummy_threading.py File 2.75 KB 0644
enum.py File 37.24 KB 0644
filecmp.py File 9.6 KB 0644
fileinput.py File 14.36 KB 0644
fnmatch.py File 3.98 KB 0644
formatter.py File 14.79 KB 0644
fractions.py File 23.76 KB 0644
ftplib.py File 34.31 KB 0644
functools.py File 36.53 KB 0644
genericpath.py File 4.86 KB 0644
getopt.py File 7.31 KB 0644
getpass.py File 5.85 KB 0644
gettext.py File 26.5 KB 0644
glob.py File 5.56 KB 0644
gzip.py File 20.91 KB 0644
hashlib.py File 9.5 KB 0644
heapq.py File 22.34 KB 0644
hmac.py File 6.47 KB 0644
imaplib.py File 52.35 KB 0644
imghdr.py File 3.72 KB 0644
imp.py File 10.29 KB 0644
inspect.py File 115.77 KB 0644
io.py File 3.46 KB 0644
ipaddress.py File 69.96 KB 0644
keyword.py File 945 B 0644
linecache.py File 5.21 KB 0644
locale.py File 76.36 KB 0644
lzma.py File 12.68 KB 0644
mailbox.py File 76.82 KB 0644
mailcap.py File 7.91 KB 0644
mimetypes.py File 21.16 KB 0644
modulefinder.py File 23.86 KB 0644
netrc.py File 5.44 KB 0644
nntplib.py File 42.25 KB 0644
ntpath.py File 27.08 KB 0644
nturl2path.py File 2.82 KB 0644
numbers.py File 10 KB 0644
opcode.py File 5.67 KB 0644
operator.py File 10.46 KB 0644
optparse.py File 58.95 KB 0644
os.py File 38.08 KB 0644
pathlib.py File 51.38 KB 0644
pdb.py File 61.28 KB 0755
pickle.py File 62.96 KB 0644
pickletools.py File 91.29 KB 0644
pipes.py File 8.71 KB 0644
pkgutil.py File 21 KB 0644
platform.py File 39.49 KB 0755
plistlib.py File 31.46 KB 0644
poplib.py File 14.72 KB 0644
posixpath.py File 15.26 KB 0644
pprint.py File 20.98 KB 0644
profile.py File 23 KB 0755
pstats.py File 26.7 KB 0644
pty.py File 4.69 KB 0644
py_compile.py File 8.01 KB 0644
pyclbr.py File 14.9 KB 0644
pydoc.py File 104.2 KB 0644
queue.py File 11.09 KB 0644
quopri.py File 7.09 KB 0755
random.py File 28.13 KB 0644
re.py File 15.49 KB 0644
reprlib.py File 5.14 KB 0644
rlcompleter.py File 6.93 KB 0644
runpy.py File 11.77 KB 0644
sched.py File 6.29 KB 0644
secrets.py File 1.99 KB 0644
selectors.py File 18.13 KB 0644
shelve.py File 8.33 KB 0644
shlex.py File 13.01 KB 0644
shutil.py File 50.27 KB 0644
signal.py File 2.22 KB 0644
site.py File 21.09 KB 0644
smtpd.py File 33.91 KB 0755
smtplib.py File 43.96 KB 0755
sndhdr.py File 6.93 KB 0644
socket.py File 34.42 KB 0644
socketserver.py File 26.66 KB 0644
sre_compile.py File 26.07 KB 0644
sre_constants.py File 6.99 KB 0644
sre_parse.py File 39.29 KB 0644
ssl.py File 49.57 KB 0644
stat.py File 5.36 KB 0644
statistics.py File 38.76 KB 0644
string.py File 10.29 KB 0644
stringprep.py File 12.61 KB 0644
struct.py File 257 B 0644
subprocess.py File 75.52 KB 0644
sunau.py File 17.94 KB 0644
symbol.py File 2.06 KB 0644
symtable.py File 7.83 KB 0644
sysconfig.py File 24.31 KB 0644
tabnanny.py File 11.15 KB 0755
tarfile.py File 91.74 KB 0755
telnetlib.py File 22.71 KB 0644
tempfile.py File 26.89 KB 0644
textwrap.py File 18.95 KB 0644
this.py File 1003 B 0644
threading.py File 49.63 KB 0644
timeit.py File 13.18 KB 0755
token.py File 2.31 KB 0644
tokenize.py File 25.24 KB 0644
trace.py File 29.17 KB 0755
traceback.py File 23.06 KB 0644
tracemalloc.py File 16.68 KB 0644
tty.py File 879 B 0644
types.py File 9.49 KB 0644
typing.py File 67.35 KB 0644
uu.py File 6.81 KB 0755
uuid.py File 29.75 KB 0644
warnings.py File 19.23 KB 0644
wave.py File 17.8 KB 0644
weakref.py File 20.89 KB 0644
webbrowser.py File 23.53 KB 0755
xdrlib.py File 5.77 KB 0644
zipapp.py File 7.36 KB 0644
zipfile.py File 85.67 KB 0644
zipimport.py File 30.04 KB 0644