[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@18.116.23.219: ~ $
"""Random variable generators.

    integers
    --------
           uniform within range

    sequences
    ---------
           pick random element
           pick random sample
           pick weighted random sample
           generate random permutation

    distributions on the real line:
    ------------------------------
           uniform
           triangular
           normal (Gaussian)
           lognormal
           negative exponential
           gamma
           beta
           pareto
           Weibull

    distributions on the circle (angles 0 to 2pi)
    ---------------------------------------------
           circular uniform
           von Mises

General notes on the underlying Mersenne Twister core generator:

* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* The random() method is implemented in C, executes in a single Python step,
  and is, therefore, threadsafe.

"""

from warnings import warn as _warn
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from _collections_abc import Set as _Set, Sequence as _Sequence
from itertools import accumulate as _accumulate, repeat as _repeat
from bisect import bisect as _bisect
import os as _os

try:
    # hashlib is pretty heavy to load, try lean internal module first
    from _sha512 import sha512 as _sha512
except ImportError:
    # fallback to official implementation
    from hashlib import sha512 as _sha512


__all__ = ["Random","seed","random","uniform","randint","choice","sample",
           "randrange","shuffle","normalvariate","lognormvariate",
           "expovariate","vonmisesvariate","gammavariate","triangular",
           "gauss","betavariate","paretovariate","weibullvariate",
           "getstate","setstate", "getrandbits", "choices",
           "SystemRandom"]

NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53        # Number of bits in a float
RECIP_BPF = 2**-BPF


# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
# the Mersenne Twister  and os.urandom() core generators.

import _random

class Random(_random.Random):
    """Random number generator base class used by bound module functions.

    Used to instantiate instances of Random to get generators that don't
    share state.

    Class Random can also be subclassed if you want to use a different basic
    generator of your own devising: in that case, override the following
    methods:  random(), seed(), getstate(), and setstate().
    Optionally, implement a getrandbits() method so that randrange()
    can cover arbitrarily large ranges.

    """

    VERSION = 3     # used by getstate/setstate

    def __init__(self, x=None):
        """Initialize an instance.

        Optional argument x controls seeding, as for Random.seed().
        """

        self.seed(x)
        self.gauss_next = None

    def __init_subclass__(cls, /, **kwargs):
        """Control how subclasses generate random integers.

        The algorithm a subclass can use depends on the random() and/or
        getrandbits() implementation available to it and determines
        whether it can generate random integers from arbitrarily large
        ranges.
        """

        for c in cls.__mro__:
            if '_randbelow' in c.__dict__:
                # just inherit it
                break
            if 'getrandbits' in c.__dict__:
                cls._randbelow = cls._randbelow_with_getrandbits
                break
            if 'random' in c.__dict__:
                cls._randbelow = cls._randbelow_without_getrandbits
                break

    def seed(self, a=None, version=2):
        """Initialize internal state from hashable object.

        None or no argument seeds from current time or from an operating
        system specific randomness source if available.

        If *a* is an int, all bits are used.

        For version 2 (the default), all of the bits are used if *a* is a str,
        bytes, or bytearray.  For version 1 (provided for reproducing random
        sequences from older versions of Python), the algorithm for str and
        bytes generates a narrower range of seeds.

        """

        if version == 1 and isinstance(a, (str, bytes)):
            a = a.decode('latin-1') if isinstance(a, bytes) else a
            x = ord(a[0]) << 7 if a else 0
            for c in map(ord, a):
                x = ((1000003 * x) ^ c) & 0xFFFFFFFFFFFFFFFF
            x ^= len(a)
            a = -2 if x == -1 else x

        if version == 2 and isinstance(a, (str, bytes, bytearray)):
            if isinstance(a, str):
                a = a.encode()
            a += _sha512(a).digest()
            a = int.from_bytes(a, 'big')

        super().seed(a)
        self.gauss_next = None

    def getstate(self):
        """Return internal state; can be passed to setstate() later."""
        return self.VERSION, super().getstate(), self.gauss_next

    def setstate(self, state):
        """Restore internal state from object returned by getstate()."""
        version = state[0]
        if version == 3:
            version, internalstate, self.gauss_next = state
            super().setstate(internalstate)
        elif version == 2:
            version, internalstate, self.gauss_next = state
            # In version 2, the state was saved as signed ints, which causes
            #   inconsistencies between 32/64-bit systems. The state is
            #   really unsigned 32-bit ints, so we convert negative ints from
            #   version 2 to positive longs for version 3.
            try:
                internalstate = tuple(x % (2**32) for x in internalstate)
            except ValueError as e:
                raise TypeError from e
            super().setstate(internalstate)
        else:
            raise ValueError("state with version %s passed to "
                             "Random.setstate() of version %s" %
                             (version, self.VERSION))

## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator.

## -------------------- pickle support  -------------------

    # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
    # longer called; we leave it here because it has been here since random was
    # rewritten back in 2001 and why risk breaking something.
    def __getstate__(self): # for pickle
        return self.getstate()

    def __setstate__(self, state):  # for pickle
        self.setstate(state)

    def __reduce__(self):
        return self.__class__, (), self.getstate()

## -------------------- integer methods  -------------------

    def randrange(self, start, stop=None, step=1, _int=int):
        """Choose a random item from range(start, stop[, step]).

        This fixes the problem with randint() which includes the
        endpoint; in Python this is usually not what you want.

        """

        # This code is a bit messy to make it fast for the
        # common case while still doing adequate error checking.
        istart = _int(start)
        if istart != start:
            raise ValueError("non-integer arg 1 for randrange()")
        if stop is None:
            if istart > 0:
                return self._randbelow(istart)
            raise ValueError("empty range for randrange()")

        # stop argument supplied.
        istop = _int(stop)
        if istop != stop:
            raise ValueError("non-integer stop for randrange()")
        width = istop - istart
        if step == 1 and width > 0:
            return istart + self._randbelow(width)
        if step == 1:
            raise ValueError("empty range for randrange() (%d, %d, %d)" % (istart, istop, width))

        # Non-unit step argument supplied.
        istep = _int(step)
        if istep != step:
            raise ValueError("non-integer step for randrange()")
        if istep > 0:
            n = (width + istep - 1) // istep
        elif istep < 0:
            n = (width + istep + 1) // istep
        else:
            raise ValueError("zero step for randrange()")

        if n <= 0:
            raise ValueError("empty range for randrange()")

        return istart + istep*self._randbelow(n)

    def randint(self, a, b):
        """Return random integer in range [a, b], including both end points.
        """

        return self.randrange(a, b+1)

    def _randbelow_with_getrandbits(self, n):
        "Return a random int in the range [0,n).  Raises ValueError if n==0."

        getrandbits = self.getrandbits
        k = n.bit_length()  # don't use (n-1) here because n can be 1
        r = getrandbits(k)          # 0 <= r < 2**k
        while r >= n:
            r = getrandbits(k)
        return r

    def _randbelow_without_getrandbits(self, n, int=int, maxsize=1<<BPF):
        """Return a random int in the range [0,n).  Raises ValueError if n==0.

        The implementation does not use getrandbits, but only random.
        """

        random = self.random
        if n >= maxsize:
            _warn("Underlying random() generator does not supply \n"
                "enough bits to choose from a population range this large.\n"
                "To remove the range limitation, add a getrandbits() method.")
            return int(random() * n)
        if n == 0:
            raise ValueError("Boundary cannot be zero")
        rem = maxsize % n
        limit = (maxsize - rem) / maxsize   # int(limit * maxsize) % n == 0
        r = random()
        while r >= limit:
            r = random()
        return int(r*maxsize) % n

    _randbelow = _randbelow_with_getrandbits

## -------------------- sequence methods  -------------------

    def choice(self, seq):
        """Choose a random element from a non-empty sequence."""
        try:
            i = self._randbelow(len(seq))
        except ValueError:
            raise IndexError('Cannot choose from an empty sequence') from None
        return seq[i]

    def shuffle(self, x, random=None):
        """Shuffle list x in place, and return None.

        Optional argument random is a 0-argument function returning a
        random float in [0.0, 1.0); if it is the default None, the
        standard random.random will be used.

        """

        if random is None:
            randbelow = self._randbelow
            for i in reversed(range(1, len(x))):
                # pick an element in x[:i+1] with which to exchange x[i]
                j = randbelow(i+1)
                x[i], x[j] = x[j], x[i]
        else:
            _int = int
            for i in reversed(range(1, len(x))):
                # pick an element in x[:i+1] with which to exchange x[i]
                j = _int(random() * (i+1))
                x[i], x[j] = x[j], x[i]

    def sample(self, population, k):
        """Chooses k unique random elements from a population sequence or set.

        Returns a new list containing elements from the population while
        leaving the original population unchanged.  The resulting list is
        in selection order so that all sub-slices will also be valid random
        samples.  This allows raffle winners (the sample) to be partitioned
        into grand prize and second place winners (the subslices).

        Members of the population need not be hashable or unique.  If the
        population contains repeats, then each occurrence is a possible
        selection in the sample.

        To choose a sample in a range of integers, use range as an argument.
        This is especially fast and space efficient for sampling from a
        large population:   sample(range(10000000), 60)
        """

        # Sampling without replacement entails tracking either potential
        # selections (the pool) in a list or previous selections in a set.

        # When the number of selections is small compared to the
        # population, then tracking selections is efficient, requiring
        # only a small set and an occasional reselection.  For
        # a larger number of selections, the pool tracking method is
        # preferred since the list takes less space than the
        # set and it doesn't suffer from frequent reselections.

        # The number of calls to _randbelow() is kept at or near k, the
        # theoretical minimum.  This is important because running time
        # is dominated by _randbelow() and because it extracts the
        # least entropy from the underlying random number generators.

        # Memory requirements are kept to the smaller of a k-length
        # set or an n-length list.

        # There are other sampling algorithms that do not require
        # auxiliary memory, but they were rejected because they made
        # too many calls to _randbelow(), making them slower and
        # causing them to eat more entropy than necessary.

        if isinstance(population, _Set):
            population = tuple(population)
        if not isinstance(population, _Sequence):
            raise TypeError("Population must be a sequence or set.  For dicts, use list(d).")
        randbelow = self._randbelow
        n = len(population)
        if not 0 <= k <= n:
            raise ValueError("Sample larger than population or is negative")
        result = [None] * k
        setsize = 21        # size of a small set minus size of an empty list
        if k > 5:
            setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
        if n <= setsize:
            # An n-length list is smaller than a k-length set
            pool = list(population)
            for i in range(k):         # invariant:  non-selected at [0,n-i)
                j = randbelow(n-i)
                result[i] = pool[j]
                pool[j] = pool[n-i-1]   # move non-selected item into vacancy
        else:
            selected = set()
            selected_add = selected.add
            for i in range(k):
                j = randbelow(n)
                while j in selected:
                    j = randbelow(n)
                selected_add(j)
                result[i] = population[j]
        return result

    def choices(self, population, weights=None, *, cum_weights=None, k=1):
        """Return a k sized list of population elements chosen with replacement.

        If the relative weights or cumulative weights are not specified,
        the selections are made with equal probability.

        """
        random = self.random
        n = len(population)
        if cum_weights is None:
            if weights is None:
                _int = int
                n += 0.0    # convert to float for a small speed improvement
                return [population[_int(random() * n)] for i in _repeat(None, k)]
            cum_weights = list(_accumulate(weights))
        elif weights is not None:
            raise TypeError('Cannot specify both weights and cumulative weights')
        if len(cum_weights) != n:
            raise ValueError('The number of weights does not match the population')
        bisect = _bisect
        total = cum_weights[-1] + 0.0   # convert to float
        hi = n - 1
        return [population[bisect(cum_weights, random() * total, 0, hi)]
                for i in _repeat(None, k)]

## -------------------- real-valued distributions  -------------------

## -------------------- uniform distribution -------------------

    def uniform(self, a, b):
        "Get a random number in the range [a, b) or [a, b] depending on rounding."
        return a + (b-a) * self.random()

## -------------------- triangular --------------------

    def triangular(self, low=0.0, high=1.0, mode=None):
        """Triangular distribution.

        Continuous distribution bounded by given lower and upper limits,
        and having a given mode value in-between.

        http://en.wikipedia.org/wiki/Triangular_distribution

        """
        u = self.random()
        try:
            c = 0.5 if mode is None else (mode - low) / (high - low)
        except ZeroDivisionError:
            return low
        if u > c:
            u = 1.0 - u
            c = 1.0 - c
            low, high = high, low
        return low + (high - low) * _sqrt(u * c)

## -------------------- normal distribution --------------------

    def normalvariate(self, mu, sigma):
        """Normal distribution.

        mu is the mean, and sigma is the standard deviation.

        """
        # mu = mean, sigma = standard deviation

        # Uses Kinderman and Monahan method. Reference: Kinderman,
        # A.J. and Monahan, J.F., "Computer generation of random
        # variables using the ratio of uniform deviates", ACM Trans
        # Math Software, 3, (1977), pp257-260.

        random = self.random
        while 1:
            u1 = random()
            u2 = 1.0 - random()
            z = NV_MAGICCONST*(u1-0.5)/u2
            zz = z*z/4.0
            if zz <= -_log(u2):
                break
        return mu + z*sigma

## -------------------- lognormal distribution --------------------

    def lognormvariate(self, mu, sigma):
        """Log normal distribution.

        If you take the natural logarithm of this distribution, you'll get a
        normal distribution with mean mu and standard deviation sigma.
        mu can have any value, and sigma must be greater than zero.

        """
        return _exp(self.normalvariate(mu, sigma))

## -------------------- exponential distribution --------------------

    def expovariate(self, lambd):
        """Exponential distribution.

        lambd is 1.0 divided by the desired mean.  It should be
        nonzero.  (The parameter would be called "lambda", but that is
        a reserved word in Python.)  Returned values range from 0 to
        positive infinity if lambd is positive, and from negative
        infinity to 0 if lambd is negative.

        """
        # lambd: rate lambd = 1/mean
        # ('lambda' is a Python reserved word)

        # we use 1-random() instead of random() to preclude the
        # possibility of taking the log of zero.
        return -_log(1.0 - self.random())/lambd

## -------------------- von Mises distribution --------------------

    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.

        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.

        """
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        s = 0.5 / kappa
        r = s + _sqrt(1.0 + s * s)

        while 1:
            u1 = random()
            z = _cos(_pi * u1)

            d = z / (r + z)
            u2 = random()
            if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
                break

        q = 1.0 / r
        f = (q + z) / (1.0 + q * z)
        u3 = random()
        if u3 > 0.5:
            theta = (mu + _acos(f)) % TWOPI
        else:
            theta = (mu - _acos(f)) % TWOPI

        return theta

## -------------------- gamma distribution --------------------

    def gammavariate(self, alpha, beta):
        """Gamma distribution.  Not the gamma function!

        Conditions on the parameters are alpha > 0 and beta > 0.

        The probability distribution function is:

                    x ** (alpha - 1) * math.exp(-x / beta)
          pdf(x) =  --------------------------------------
                      math.gamma(alpha) * beta ** alpha

        """

        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError('gammavariate: alpha and beta must be > 0.0')

        random = self.random
        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv

            while 1:
                u1 = random()
                if not 1e-7 < u1 < .9999999:
                    continue
                u2 = 1.0 - random()
                v = _log(u1/(1.0-u1))/ainv
                x = alpha*_exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1/beta)
            return -_log(1.0 - random()) * beta

        else:   # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = p ** (1.0/alpha)
                else:
                    x = -_log((b-p)/alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x ** (alpha - 1.0):
                        break
                elif u1 <= _exp(-x):
                    break
            return x * beta

## -------------------- Gauss (faster alternative) --------------------

    def gauss(self, mu, sigma):
        """Gaussian distribution.

        mu is the mean, and sigma is the standard deviation.  This is
        slightly faster than the normalvariate() function.

        Not thread-safe without a lock around calls.

        """

        # When x and y are two variables from [0, 1), uniformly
        # distributed, then
        #
        #    cos(2*pi*x)*sqrt(-2*log(1-y))
        #    sin(2*pi*x)*sqrt(-2*log(1-y))
        #
        # are two *independent* variables with normal distribution
        # (mu = 0, sigma = 1).
        # (Lambert Meertens)
        # (corrected version; bug discovered by Mike Miller, fixed by LM)

        # Multithreading note: When two threads call this function
        # simultaneously, it is possible that they will receive the
        # same return value.  The window is very small though.  To
        # avoid this, you have to use a lock around all calls.  (I
        # didn't want to slow this down in the serial case by using a
        # lock here.)

        random = self.random
        z = self.gauss_next
        self.gauss_next = None
        if z is None:
            x2pi = random() * TWOPI
            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
            z = _cos(x2pi) * g2rad
            self.gauss_next = _sin(x2pi) * g2rad

        return mu + z*sigma

## -------------------- beta --------------------
## See
## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
## for Ivan Frohne's insightful analysis of why the original implementation:
##
##    def betavariate(self, alpha, beta):
##        # Discrete Event Simulation in C, pp 87-88.
##
##        y = self.expovariate(alpha)
##        z = self.expovariate(1.0/beta)
##        return z/(y+z)
##
## was dead wrong, and how it probably got that way.

    def betavariate(self, alpha, beta):
        """Beta distribution.

        Conditions on the parameters are alpha > 0 and beta > 0.
        Returned values range between 0 and 1.

        """

        # This version due to Janne Sinkkonen, and matches all the std
        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
        y = self.gammavariate(alpha, 1.0)
        if y == 0:
            return 0.0
        else:
            return y / (y + self.gammavariate(beta, 1.0))

## -------------------- Pareto --------------------

    def paretovariate(self, alpha):
        """Pareto distribution.  alpha is the shape parameter."""
        # Jain, pg. 495

        u = 1.0 - self.random()
        return 1.0 / u ** (1.0/alpha)

## -------------------- Weibull --------------------

    def weibullvariate(self, alpha, beta):
        """Weibull distribution.

        alpha is the scale parameter and beta is the shape parameter.

        """
        # Jain, pg. 499; bug fix courtesy Bill Arms

        u = 1.0 - self.random()
        return alpha * (-_log(u)) ** (1.0/beta)

## --------------- Operating System Random Source  ------------------

class SystemRandom(Random):
    """Alternate random number generator using sources provided
    by the operating system (such as /dev/urandom on Unix or
    CryptGenRandom on Windows).

     Not available on all systems (see os.urandom() for details).
    """

    def random(self):
        """Get the next random number in the range [0.0, 1.0)."""
        return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF

    def getrandbits(self, k):
        """getrandbits(k) -> x.  Generates an int with k random bits."""
        if k <= 0:
            raise ValueError('number of bits must be greater than zero')
        numbytes = (k + 7) // 8                       # bits / 8 and rounded up
        x = int.from_bytes(_urandom(numbytes), 'big')
        return x >> (numbytes * 8 - k)                # trim excess bits

    def seed(self, *args, **kwds):
        "Stub method.  Not used for a system random number generator."
        return None

    def _notimplemented(self, *args, **kwds):
        "Method should not be called for a system random number generator."
        raise NotImplementedError('System entropy source does not have state.')
    getstate = setstate = _notimplemented

## -------------------- test program --------------------

def _test_generator(n, func, args):
    import time
    print(n, 'times', func.__name__)
    total = 0.0
    sqsum = 0.0
    smallest = 1e10
    largest = -1e10
    t0 = time.perf_counter()
    for i in range(n):
        x = func(*args)
        total += x
        sqsum = sqsum + x*x
        smallest = min(x, smallest)
        largest = max(x, largest)
    t1 = time.perf_counter()
    print(round(t1-t0, 3), 'sec,', end=' ')
    avg = total/n
    stddev = _sqrt(sqsum/n - avg*avg)
    print('avg %g, stddev %g, min %g, max %g\n' % \
              (avg, stddev, smallest, largest))


def _test(N=2000):
    _test_generator(N, random, ())
    _test_generator(N, normalvariate, (0.0, 1.0))
    _test_generator(N, lognormvariate, (0.0, 1.0))
    _test_generator(N, vonmisesvariate, (0.0, 1.0))
    _test_generator(N, gammavariate, (0.01, 1.0))
    _test_generator(N, gammavariate, (0.1, 1.0))
    _test_generator(N, gammavariate, (0.1, 2.0))
    _test_generator(N, gammavariate, (0.5, 1.0))
    _test_generator(N, gammavariate, (0.9, 1.0))
    _test_generator(N, gammavariate, (1.0, 1.0))
    _test_generator(N, gammavariate, (2.0, 1.0))
    _test_generator(N, gammavariate, (20.0, 1.0))
    _test_generator(N, gammavariate, (200.0, 1.0))
    _test_generator(N, gauss, (0.0, 1.0))
    _test_generator(N, betavariate, (3.0, 3.0))
    _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))

# Create one instance, seeded from current time, and export its methods
# as module-level functions.  The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own Random() instance.

_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
choices = _inst.choices
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
getrandbits = _inst.getrandbits

if hasattr(_os, "fork"):
    _os.register_at_fork(after_in_child=_inst.seed)


if __name__ == '__main__':
    _test()

Filemanager

Name Type Size Permission Actions
__pycache__ Folder 0755
asyncio Folder 0755
collections Folder 0755
concurrent Folder 0755
config-3.8-x86_64-linux-gnu Folder 0755
ctypes Folder 0755
curses Folder 0755
dbm Folder 0755
distutils Folder 0755
email Folder 0755
encodings Folder 0755
ensurepip Folder 0755
html Folder 0755
http Folder 0755
importlib Folder 0755
json Folder 0755
lib-dynload Folder 0755
lib2to3 Folder 0755
logging Folder 0755
multiprocessing Folder 0755
pydoc_data Folder 0755
site-packages Folder 0755
sqlite3 Folder 0755
unittest Folder 0755
urllib Folder 0755
venv Folder 0755
wsgiref Folder 0755
xml Folder 0755
xmlrpc Folder 0755
LICENSE.txt File 13.6 KB 0644
__future__.py File 5.03 KB 0644
__phello__.foo.py File 64 B 0644
_bootlocale.py File 1.76 KB 0644
_collections_abc.py File 25.49 KB 0644
_compat_pickle.py File 8.54 KB 0644
_compression.py File 5.21 KB 0644
_dummy_thread.py File 5.89 KB 0644
_markupbase.py File 14.26 KB 0644
_osx_support.py File 21.26 KB 0644
_py_abc.py File 6.04 KB 0644
_pydecimal.py File 223.31 KB 0644
_pyio.py File 90.99 KB 0644
_sitebuiltins.py File 3.04 KB 0644
_strptime.py File 24.68 KB 0644
_sysconfigdata__linux_x86_64-linux-gnu.py File 37.55 KB 0644
_sysconfigdata_d_linux_x86_64-linux-gnu.py File 37.29 KB 0644
_threading_local.py File 7.05 KB 0644
_weakrefset.py File 5.6 KB 0644
abc.py File 4.38 KB 0644
aifc.py File 32.04 KB 0644
antigravity.py File 477 B 0644
argparse.py File 93.76 KB 0644
ast.py File 18.78 KB 0644
asynchat.py File 11.06 KB 0644
asyncore.py File 19.62 KB 0644
base64.py File 19.92 KB 0755
bdb.py File 31.3 KB 0644
binhex.py File 13.63 KB 0644
bisect.py File 2.16 KB 0644
bz2.py File 12.26 KB 0644
cProfile.py File 6.85 KB 0755
calendar.py File 24.25 KB 0644
cgi.py File 33.15 KB 0755
cgitb.py File 11.81 KB 0644
chunk.py File 5.31 KB 0644
cmd.py File 14.51 KB 0644
code.py File 10.37 KB 0644
codecs.py File 35.81 KB 0644
codeop.py File 6.18 KB 0644
colorsys.py File 3.97 KB 0644
compileall.py File 13.36 KB 0644
configparser.py File 53.1 KB 0644
contextlib.py File 24.41 KB 0644
contextvars.py File 129 B 0644
copy.py File 8.46 KB 0644
copyreg.py File 6.97 KB 0644
crypt.py File 3.53 KB 0644
csv.py File 15.77 KB 0644
dataclasses.py File 48.8 KB 0644
datetime.py File 86.22 KB 0644
decimal.py File 320 B 0644
difflib.py File 82.09 KB 0644
dis.py File 20.09 KB 0644
doctest.py File 102.09 KB 0644
dummy_threading.py File 2.75 KB 0644
enum.py File 37.24 KB 0644
filecmp.py File 9.6 KB 0644
fileinput.py File 14.36 KB 0644
fnmatch.py File 3.98 KB 0644
formatter.py File 14.79 KB 0644
fractions.py File 23.76 KB 0644
ftplib.py File 34.31 KB 0644
functools.py File 36.53 KB 0644
genericpath.py File 4.86 KB 0644
getopt.py File 7.31 KB 0644
getpass.py File 5.85 KB 0644
gettext.py File 26.5 KB 0644
glob.py File 5.56 KB 0644
gzip.py File 20.91 KB 0644
hashlib.py File 9.5 KB 0644
heapq.py File 22.34 KB 0644
hmac.py File 6.47 KB 0644
imaplib.py File 52.35 KB 0644
imghdr.py File 3.72 KB 0644
imp.py File 10.29 KB 0644
inspect.py File 115.77 KB 0644
io.py File 3.46 KB 0644
ipaddress.py File 69.96 KB 0644
keyword.py File 945 B 0644
linecache.py File 5.21 KB 0644
locale.py File 76.36 KB 0644
lzma.py File 12.68 KB 0644
mailbox.py File 76.82 KB 0644
mailcap.py File 7.91 KB 0644
mimetypes.py File 21.16 KB 0644
modulefinder.py File 23.86 KB 0644
netrc.py File 5.44 KB 0644
nntplib.py File 42.25 KB 0644
ntpath.py File 27.08 KB 0644
nturl2path.py File 2.82 KB 0644
numbers.py File 10 KB 0644
opcode.py File 5.67 KB 0644
operator.py File 10.46 KB 0644
optparse.py File 58.95 KB 0644
os.py File 38.08 KB 0644
pathlib.py File 51.38 KB 0644
pdb.py File 61.28 KB 0755
pickle.py File 62.96 KB 0644
pickletools.py File 91.29 KB 0644
pipes.py File 8.71 KB 0644
pkgutil.py File 21 KB 0644
platform.py File 39.49 KB 0755
plistlib.py File 31.46 KB 0644
poplib.py File 14.72 KB 0644
posixpath.py File 15.26 KB 0644
pprint.py File 20.98 KB 0644
profile.py File 23 KB 0755
pstats.py File 26.7 KB 0644
pty.py File 4.69 KB 0644
py_compile.py File 8.01 KB 0644
pyclbr.py File 14.9 KB 0644
pydoc.py File 104.2 KB 0644
queue.py File 11.09 KB 0644
quopri.py File 7.09 KB 0755
random.py File 28.13 KB 0644
re.py File 15.49 KB 0644
reprlib.py File 5.14 KB 0644
rlcompleter.py File 6.93 KB 0644
runpy.py File 11.77 KB 0644
sched.py File 6.29 KB 0644
secrets.py File 1.99 KB 0644
selectors.py File 18.13 KB 0644
shelve.py File 8.33 KB 0644
shlex.py File 13.01 KB 0644
shutil.py File 50.27 KB 0644
signal.py File 2.22 KB 0644
site.py File 21.09 KB 0644
smtpd.py File 33.91 KB 0755
smtplib.py File 43.96 KB 0755
sndhdr.py File 6.93 KB 0644
socket.py File 34.42 KB 0644
socketserver.py File 26.66 KB 0644
sre_compile.py File 26.07 KB 0644
sre_constants.py File 6.99 KB 0644
sre_parse.py File 39.29 KB 0644
ssl.py File 49.57 KB 0644
stat.py File 5.36 KB 0644
statistics.py File 38.76 KB 0644
string.py File 10.29 KB 0644
stringprep.py File 12.61 KB 0644
struct.py File 257 B 0644
subprocess.py File 75.52 KB 0644
sunau.py File 17.94 KB 0644
symbol.py File 2.06 KB 0644
symtable.py File 7.83 KB 0644
sysconfig.py File 24.31 KB 0644
tabnanny.py File 11.15 KB 0755
tarfile.py File 91.74 KB 0755
telnetlib.py File 22.71 KB 0644
tempfile.py File 26.89 KB 0644
textwrap.py File 18.95 KB 0644
this.py File 1003 B 0644
threading.py File 49.63 KB 0644
timeit.py File 13.18 KB 0755
token.py File 2.31 KB 0644
tokenize.py File 25.24 KB 0644
trace.py File 29.17 KB 0755
traceback.py File 23.06 KB 0644
tracemalloc.py File 16.68 KB 0644
tty.py File 879 B 0644
types.py File 9.49 KB 0644
typing.py File 67.35 KB 0644
uu.py File 6.81 KB 0755
uuid.py File 29.75 KB 0644
warnings.py File 19.23 KB 0644
wave.py File 17.8 KB 0644
weakref.py File 20.89 KB 0644
webbrowser.py File 23.53 KB 0755
xdrlib.py File 5.77 KB 0644
zipapp.py File 7.36 KB 0644
zipfile.py File 85.67 KB 0644
zipimport.py File 30.04 KB 0644