<?xml version="1.0" ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>BN_num_bytes</title> <meta http-equiv="content-type" content="text/html; charset=utf-8" /> <link rev="made" href="mailto:root@localhost" /> </head> <body style="background-color: white"> <ul id="index"> <li><a href="#NAME">NAME</a></li> <li><a href="#SYNOPSIS">SYNOPSIS</a></li> <li><a href="#DESCRIPTION">DESCRIPTION</a></li> <li><a href="#RETURN-VALUES">RETURN VALUES</a></li> <li><a href="#NOTES">NOTES</a></li> <li><a href="#SEE-ALSO">SEE ALSO</a></li> <li><a href="#COPYRIGHT">COPYRIGHT</a></li> </ul> <h1 id="NAME">NAME</h1> <p>BN_num_bits, BN_num_bytes, BN_num_bits_word - get BIGNUM size</p> <h1 id="SYNOPSIS">SYNOPSIS</h1> <pre><code> #include <openssl/bn.h> int BN_num_bytes(const BIGNUM *a); int BN_num_bits(const BIGNUM *a); int BN_num_bits_word(BN_ULONG w);</code></pre> <h1 id="DESCRIPTION">DESCRIPTION</h1> <p>BN_num_bytes() returns the size of a <b>BIGNUM</b> in bytes.</p> <p>BN_num_bits_word() returns the number of significant bits in a word. If we take 0x00000432 as an example, it returns 11, not 16, not 32. Basically, except for a zero, it returns <i>floor(log2(w))+1</i>.</p> <p>BN_num_bits() returns the number of significant bits in a <b>BIGNUM</b>, following the same principle as BN_num_bits_word().</p> <p>BN_num_bytes() is a macro.</p> <h1 id="RETURN-VALUES">RETURN VALUES</h1> <p>The size.</p> <h1 id="NOTES">NOTES</h1> <p>Some have tried using BN_num_bits() on individual numbers in RSA keys, DH keys and DSA keys, and found that they don't always come up with the number of bits they expected (something like 512, 1024, 2048, ...). This is because generating a number with some specific number of bits doesn't always set the highest bits, thereby making the number of <i>significant</i> bits a little lower. If you want to know the "key size" of such a key, either use functions like RSA_size(), DH_size() and DSA_size(), or use BN_num_bytes() and multiply with 8 (although there's no real guarantee that will match the "key size", just a lot more probability).</p> <h1 id="SEE-ALSO">SEE ALSO</h1> <p><a href="../man3/DH_size.html">DH_size(3)</a>, <a href="../man3/DSA_size.html">DSA_size(3)</a>, <a href="../man3/RSA_size.html">RSA_size(3)</a></p> <h1 id="COPYRIGHT">COPYRIGHT</h1> <p>Copyright 2000-2017 The OpenSSL Project Authors. All Rights Reserved.</p> <p>Licensed under the OpenSSL license (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at <a href="https://www.openssl.org/source/license.html">https://www.openssl.org/source/license.html</a>.</p> </body> </html>