<?xml version="1.0" ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>EC_POINT_add</title> <meta http-equiv="content-type" content="text/html; charset=utf-8" /> <link rev="made" href="mailto:root@localhost" /> </head> <body style="background-color: white"> <ul id="index"> <li><a href="#NAME">NAME</a></li> <li><a href="#SYNOPSIS">SYNOPSIS</a></li> <li><a href="#DESCRIPTION">DESCRIPTION</a></li> <li><a href="#RETURN-VALUES">RETURN VALUES</a></li> <li><a href="#SEE-ALSO">SEE ALSO</a></li> <li><a href="#COPYRIGHT">COPYRIGHT</a></li> </ul> <h1 id="NAME">NAME</h1> <p>EC_POINT_add, EC_POINT_dbl, EC_POINT_invert, EC_POINT_is_at_infinity, EC_POINT_is_on_curve, EC_POINT_cmp, EC_POINT_make_affine, EC_POINTs_make_affine, EC_POINTs_mul, EC_POINT_mul, EC_GROUP_precompute_mult, EC_GROUP_have_precompute_mult - Functions for performing mathematical operations and tests on EC_POINT objects</p> <h1 id="SYNOPSIS">SYNOPSIS</h1> <pre><code> #include <openssl/ec.h> int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx); int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx); int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx); int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *p); int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx); int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx); int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx); int EC_POINTs_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx); int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n, size_t num, const EC_POINT *p[], const BIGNUM *m[], BN_CTX *ctx); int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n, const EC_POINT *q, const BIGNUM *m, BN_CTX *ctx); int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx); int EC_GROUP_have_precompute_mult(const EC_GROUP *group);</code></pre> <h1 id="DESCRIPTION">DESCRIPTION</h1> <p>EC_POINT_add adds the two points <b>a</b> and <b>b</b> and places the result in <b>r</b>. Similarly EC_POINT_dbl doubles the point <b>a</b> and places the result in <b>r</b>. In both cases it is valid for <b>r</b> to be one of <b>a</b> or <b>b</b>.</p> <p>EC_POINT_invert calculates the inverse of the supplied point <b>a</b>. The result is placed back in <b>a</b>.</p> <p>The function EC_POINT_is_at_infinity tests whether the supplied point is at infinity or not.</p> <p>EC_POINT_is_on_curve tests whether the supplied point is on the curve or not.</p> <p>EC_POINT_cmp compares the two supplied points and tests whether or not they are equal.</p> <p>The functions EC_POINT_make_affine and EC_POINTs_make_affine force the internal representation of the EC_POINT(s) into the affine co-ordinate system. In the case of EC_POINTs_make_affine the value <b>num</b> provides the number of points in the array <b>points</b> to be forced.</p> <p>EC_POINT_mul is a convenient interface to EC_POINTs_mul: it calculates the value generator * <b>n</b> + <b>q</b> * <b>m</b> and stores the result in <b>r</b>. The value <b>n</b> may be NULL in which case the result is just <b>q</b> * <b>m</b> (variable point multiplication). Alternatively, both <b>q</b> and <b>m</b> may be NULL, and <b>n</b> non-NULL, in which case the result is just generator * <b>n</b> (fixed point multiplication). When performing a single fixed or variable point multiplication, the underlying implementation uses a constant time algorithm, when the input scalar (either <b>n</b> or <b>m</b>) is in the range [0, ec_group_order).</p> <p>EC_POINTs_mul calculates the value generator * <b>n</b> + <b>q[0]</b> * <b>m[0]</b> + ... + <b>q[num-1]</b> * <b>m[num-1]</b>. As for EC_POINT_mul the value <b>n</b> may be NULL or <b>num</b> may be zero. When performing a fixed point multiplication (<b>n</b> is non-NULL and <b>num</b> is 0) or a variable point multiplication (<b>n</b> is NULL and <b>num</b> is 1), the underlying implementation uses a constant time algorithm, when the input scalar (either <b>n</b> or <b>m[0]</b>) is in the range [0, ec_group_order).</p> <p>The function EC_GROUP_precompute_mult stores multiples of the generator for faster point multiplication, whilst EC_GROUP_have_precompute_mult tests whether precomputation has already been done. See <a href="../man3/EC_GROUP_copy.html">EC_GROUP_copy(3)</a> for information about the generator.</p> <h1 id="RETURN-VALUES">RETURN VALUES</h1> <p>The following functions return 1 on success or 0 on error: EC_POINT_add, EC_POINT_dbl, EC_POINT_invert, EC_POINT_make_affine, EC_POINTs_make_affine, EC_POINTs_make_affine, EC_POINT_mul, EC_POINTs_mul and EC_GROUP_precompute_mult.</p> <p>EC_POINT_is_at_infinity returns 1 if the point is at infinity, or 0 otherwise.</p> <p>EC_POINT_is_on_curve returns 1 if the point is on the curve, 0 if not, or -1 on error.</p> <p>EC_POINT_cmp returns 1 if the points are not equal, 0 if they are, or -1 on error.</p> <p>EC_GROUP_have_precompute_mult return 1 if a precomputation has been done, or 0 if not.</p> <h1 id="SEE-ALSO">SEE ALSO</h1> <p><a href="../man7/crypto.html">crypto(7)</a>, <a href="../man3/EC_GROUP_new.html">EC_GROUP_new(3)</a>, <a href="../man3/EC_GROUP_copy.html">EC_GROUP_copy(3)</a>, <a href="../man3/EC_POINT_new.html">EC_POINT_new(3)</a>, <a href="../man3/EC_KEY_new.html">EC_KEY_new(3)</a>, <a href="../man3/EC_GFp_simple_method.html">EC_GFp_simple_method(3)</a>, <a href="../man3/d2i_ECPKParameters.html">d2i_ECPKParameters(3)</a></p> <h1 id="COPYRIGHT">COPYRIGHT</h1> <p>Copyright 2013-2018 The OpenSSL Project Authors. All Rights Reserved.</p> <p>Licensed under the OpenSSL license (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at <a href="https://www.openssl.org/source/license.html">https://www.openssl.org/source/license.html</a>.</p> </body> </html>