[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@18.221.182.89: ~ $
#
#   ElGamal.py : ElGamal encryption/decryption and signatures
#
#  Part of the Python Cryptography Toolkit
#
#  Originally written by: A.M. Kuchling
#
# ===================================================================
# The contents of this file are dedicated to the public domain.  To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================

__all__ = ['generate', 'construct', 'ElGamalKey']

from Crypto import Random
from Crypto.Math.Primality import ( generate_probable_safe_prime,
                                    test_probable_prime, COMPOSITE )
from Crypto.Math.Numbers import Integer

# Generate an ElGamal key with N bits
def generate(bits, randfunc):
    """Randomly generate a fresh, new ElGamal key.

    The key will be safe for use for both encryption and signature
    (although it should be used for **only one** purpose).

    Args:
      bits (int):
        Key length, or size (in bits) of the modulus *p*.
        The recommended value is 2048.
      randfunc (callable):
        Random number generation function; it should accept
        a single integer *N* and return a string of random
        *N* random bytes.

    Return:
        an :class:`ElGamalKey` object
    """

    obj=ElGamalKey()

    # Generate a safe prime p
    # See Algorithm 4.86 in Handbook of Applied Cryptography
    obj.p = generate_probable_safe_prime(exact_bits=bits, randfunc=randfunc)
    q = (obj.p - 1) >> 1

    # Generate generator g
    while 1:
        # Choose a square residue; it will generate a cyclic group of order q.
        obj.g = pow(Integer.random_range(min_inclusive=2,
                                     max_exclusive=obj.p,
                                     randfunc=randfunc), 2, obj.p)

        # We must avoid g=2 because of Bleichenbacher's attack described
        # in "Generating ElGamal signatures without knowning the secret key",
        # 1996
        if obj.g in (1, 2):
            continue

        # Discard g if it divides p-1 because of the attack described
        # in Note 11.67 (iii) in HAC
        if (obj.p - 1) % obj.g == 0:
            continue

        # g^{-1} must not divide p-1 because of Khadir's attack
        # described in "Conditions of the generator for forging ElGamal
        # signature", 2011
        ginv = obj.g.inverse(obj.p)
        if (obj.p - 1) % ginv == 0:
            continue

        # Found
        break

    # Generate private key x
    obj.x = Integer.random_range(min_inclusive=2,
                                 max_exclusive=obj.p-1,
                                 randfunc=randfunc)
    # Generate public key y
    obj.y = pow(obj.g, obj.x, obj.p)
    return obj

def construct(tup):
    r"""Construct an ElGamal key from a tuple of valid ElGamal components.

    The modulus *p* must be a prime.
    The following conditions must apply:

    .. math::

        \begin{align}
        &1 < g < p-1 \\
        &g^{p-1} = 1 \text{ mod } 1 \\
        &1 < x < p-1 \\
        &g^x = y \text{ mod } p
        \end{align}

    Args:
      tup (tuple):
        A tuple with either 3 or 4 integers,
        in the following order:

        1. Modulus (*p*).
        2. Generator (*g*).
        3. Public key (*y*).
        4. Private key (*x*). Optional.

    Raises:
        ValueError: when the key being imported fails the most basic ElGamal validity checks.

    Returns:
        an :class:`ElGamalKey` object
    """

    obj=ElGamalKey()
    if len(tup) not in [3,4]:
        raise ValueError('argument for construct() wrong length')
    for i in range(len(tup)):
        field = obj._keydata[i]
        setattr(obj, field, Integer(tup[i]))

    fmt_error = test_probable_prime(obj.p) == COMPOSITE
    fmt_error |= obj.g<=1 or obj.g>=obj.p
    fmt_error |= pow(obj.g, obj.p-1, obj.p)!=1
    fmt_error |= obj.y<1 or obj.y>=obj.p
    if len(tup)==4:
        fmt_error |= obj.x<=1 or obj.x>=obj.p
        fmt_error |= pow(obj.g, obj.x, obj.p)!=obj.y

    if fmt_error:
        raise ValueError("Invalid ElGamal key components")

    return obj

class ElGamalKey(object):
    r"""Class defining an ElGamal key.
    Do not instantiate directly.
    Use :func:`generate` or :func:`construct` instead.

    :ivar p: Modulus
    :vartype d: integer

    :ivar g: Generator
    :vartype e: integer

    :ivar y: Public key component
    :vartype y: integer

    :ivar x: Private key component
    :vartype x: integer
    """

    #: Dictionary of ElGamal parameters.
    #:
    #: A public key will only have the following entries:
    #:
    #:  - **y**, the public key.
    #:  - **g**, the generator.
    #:  - **p**, the modulus.
    #:
    #: A private key will also have:
    #:
    #:  - **x**, the private key.
    _keydata=['p', 'g', 'y', 'x']

    def __init__(self, randfunc=None):
        if randfunc is None:
            randfunc = Random.new().read
        self._randfunc = randfunc

    def _encrypt(self, M, K):
        a=pow(self.g, K, self.p)
        b=( pow(self.y, K, self.p)*M ) % self.p
        return [int(a), int(b)]

    def _decrypt(self, M):
        if (not hasattr(self, 'x')):
            raise TypeError('Private key not available in this object')
        r = Integer.random_range(min_inclusive=2,
                                 max_exclusive=self.p-1,
                                 randfunc=self._randfunc)
        a_blind = (pow(self.g, r, self.p) * M[0]) % self.p
        ax=pow(a_blind, self.x, self.p)
        plaintext_blind = (ax.inverse(self.p) * M[1] ) % self.p
        plaintext = (plaintext_blind * pow(self.y, r, self.p)) % self.p
        return int(plaintext)

    def _sign(self, M, K):
        if (not hasattr(self, 'x')):
            raise TypeError('Private key not available in this object')
        p1=self.p-1
        K = Integer(K)
        if (K.gcd(p1)!=1):
            raise ValueError('Bad K value: GCD(K,p-1)!=1')
        a=pow(self.g, K, self.p)
        t=(Integer(M)-self.x*a) % p1
        while t<0: t=t+p1
        b=(t*K.inverse(p1)) % p1
        return [int(a), int(b)]

    def _verify(self, M, sig):
        sig = [Integer(x) for x in sig]
        if sig[0]<1 or sig[0]>self.p-1:
            return 0
        v1=pow(self.y, sig[0], self.p)
        v1=(v1*pow(sig[0], sig[1], self.p)) % self.p
        v2=pow(self.g, M, self.p)
        if v1==v2:
            return 1
        return 0

    def has_private(self):
        """Whether this is an ElGamal private key"""

        if hasattr(self, 'x'):
            return 1
        else:
            return 0

    def can_encrypt(self):
        return True

    def can_sign(self):
        return True

    def publickey(self):
        """A matching ElGamal public key.

        Returns:
            a new :class:`ElGamalKey` object
        """
        return construct((self.p, self.g, self.y))

    def __eq__(self, other):
        if bool(self.has_private()) != bool(other.has_private()):
            return False

        result = True
        for comp in self._keydata:
            result = result and (getattr(self.key, comp, None) ==
                                 getattr(other.key, comp, None))
        return result

    def __ne__(self, other):
        return not self.__eq__(other)

    def __getstate__(self):
        # ElGamal key is not pickable
        from pickle import PicklingError
        raise PicklingError

    # Methods defined in PyCrypto that we don't support anymore

    def sign(self, M, K):
        raise NotImplementedError

    def verify(self, M, signature):
        raise NotImplementedError

    def encrypt(self, plaintext, K):
        raise NotImplementedError

    def decrypt(self, ciphertext):
        raise NotImplementedError

    def blind(self, M, B):
        raise NotImplementedError

    def unblind(self, M, B):
        raise NotImplementedError

    def size(self):
        raise NotImplementedError

Filemanager

Name Type Size Permission Actions
__pycache__ Folder 0755
DSA.py File 21.85 KB 0644
DSA.pyi File 1.35 KB 0644
ECC.py File 63.25 KB 0644
ECC.pyi File 2.5 KB 0644
ElGamal.py File 8.41 KB 0644
ElGamal.pyi File 674 B 0644
RSA.py File 29.26 KB 0644
RSA.pyi File 1.98 KB 0644
__init__.py File 3.07 KB 0644
__init__.pyi File 0 B 0644
_ec_ws.abi3.so File 938 KB 0755
_ed25519.abi3.so File 215.34 KB 0755
_ed448.abi3.so File 244.68 KB 0755
_openssh.py File 5.01 KB 0644
_openssh.pyi File 324 B 0644
_x25519.abi3.so File 77.57 KB 0755