[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@3.144.35.147: ~ $
// Special functions -*- C++ -*-

// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file tr1/exp_integral.tcc
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{tr1/cmath}
 */

//
// ISO C++ 14882 TR1: 5.2  Special functions
//

//  Written by Edward Smith-Rowland based on:
//
//   (1) Handbook of Mathematical Functions,
//       Ed. by Milton Abramowitz and Irene A. Stegun,
//       Dover Publications, New-York, Section 5, pp. 228-251.
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
//       2nd ed, pp. 222-225.
//

#ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC
#define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1

#include "special_function_util.h"

namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
  // [5.2] Special functions

  // Implementation-space details.
  namespace __detail
  {
  _GLIBCXX_BEGIN_NAMESPACE_VERSION

    template<typename _Tp> _Tp __expint_E1(_Tp);

    /**
     *   @brief Return the exponential integral @f$ E_1(x) @f$
     *          by series summation.  This should be good
     *          for @f$ x < 1 @f$.
     * 
     *   The exponential integral is given by
     *          \f[
     *            E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt
     *          \f]
     * 
     *   @param  __x  The argument of the exponential integral function.
     *   @return  The exponential integral.
     */
    template<typename _Tp>
    _Tp
    __expint_E1_series(_Tp __x)
    {
      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
      _Tp __term = _Tp(1);
      _Tp __esum = _Tp(0);
      _Tp __osum = _Tp(0);
      const unsigned int __max_iter = 100;
      for (unsigned int __i = 1; __i < __max_iter; ++__i)
        {
          __term *= - __x / __i;
          if (std::abs(__term) < __eps)
            break;
          if (__term >= _Tp(0))
            __esum += __term / __i;
          else
            __osum += __term / __i;
        }

      return - __esum - __osum
             - __numeric_constants<_Tp>::__gamma_e() - std::log(__x);
    }


    /**
     *   @brief Return the exponential integral @f$ E_1(x) @f$
     *          by asymptotic expansion.
     * 
     *   The exponential integral is given by
     *          \f[
     *            E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
     *          \f]
     * 
     *   @param  __x  The argument of the exponential integral function.
     *   @return  The exponential integral.
     */
    template<typename _Tp>
    _Tp
    __expint_E1_asymp(_Tp __x)
    {
      _Tp __term = _Tp(1);
      _Tp __esum = _Tp(1);
      _Tp __osum = _Tp(0);
      const unsigned int __max_iter = 1000;
      for (unsigned int __i = 1; __i < __max_iter; ++__i)
        {
          _Tp __prev = __term;
          __term *= - __i / __x;
          if (std::abs(__term) > std::abs(__prev))
            break;
          if (__term >= _Tp(0))
            __esum += __term;
          else
            __osum += __term;
        }

      return std::exp(- __x) * (__esum + __osum) / __x;
    }


    /**
     *   @brief Return the exponential integral @f$ E_n(x) @f$
     *          by series summation.
     * 
     *   The exponential integral is given by
     *          \f[
     *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
     *          \f]
     * 
     *   @param  __n  The order of the exponential integral function.
     *   @param  __x  The argument of the exponential integral function.
     *   @return  The exponential integral.
     */
    template<typename _Tp>
    _Tp
    __expint_En_series(unsigned int __n, _Tp __x)
    {
      const unsigned int __max_iter = 100;
      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
      const int __nm1 = __n - 1;
      _Tp __ans = (__nm1 != 0
                ? _Tp(1) / __nm1 : -std::log(__x)
                                   - __numeric_constants<_Tp>::__gamma_e());
      _Tp __fact = _Tp(1);
      for (int __i = 1; __i <= __max_iter; ++__i)
        {
          __fact *= -__x / _Tp(__i);
          _Tp __del;
          if ( __i != __nm1 )
            __del = -__fact / _Tp(__i - __nm1);
          else
            {
              _Tp __psi = -__numeric_constants<_Tp>::gamma_e();
              for (int __ii = 1; __ii <= __nm1; ++__ii)
                __psi += _Tp(1) / _Tp(__ii);
              __del = __fact * (__psi - std::log(__x)); 
            }
          __ans += __del;
          if (std::abs(__del) < __eps * std::abs(__ans))
            return __ans;
        }
      std::__throw_runtime_error(__N("Series summation failed "
                                     "in __expint_En_series."));
    }


    /**
     *   @brief Return the exponential integral @f$ E_n(x) @f$
     *          by continued fractions.
     * 
     *   The exponential integral is given by
     *          \f[
     *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
     *          \f]
     * 
     *   @param  __n  The order of the exponential integral function.
     *   @param  __x  The argument of the exponential integral function.
     *   @return  The exponential integral.
     */
    template<typename _Tp>
    _Tp
    __expint_En_cont_frac(unsigned int __n, _Tp __x)
    {
      const unsigned int __max_iter = 100;
      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
      const _Tp __fp_min = std::numeric_limits<_Tp>::min();
      const int __nm1 = __n - 1;
      _Tp __b = __x + _Tp(__n);
      _Tp __c = _Tp(1) / __fp_min;
      _Tp __d = _Tp(1) / __b;
      _Tp __h = __d;
      for ( unsigned int __i = 1; __i <= __max_iter; ++__i )
        {
          _Tp __a = -_Tp(__i * (__nm1 + __i));
          __b += _Tp(2);
          __d = _Tp(1) / (__a * __d + __b);
          __c = __b + __a / __c;
          const _Tp __del = __c * __d;
          __h *= __del;
          if (std::abs(__del - _Tp(1)) < __eps)
            {
              const _Tp __ans = __h * std::exp(-__x);
              return __ans;
            }
        }
      std::__throw_runtime_error(__N("Continued fraction failed "
                                     "in __expint_En_cont_frac."));
    }


    /**
     *   @brief Return the exponential integral @f$ E_n(x) @f$
     *          by recursion.  Use upward recursion for @f$ x < n @f$
     *          and downward recursion (Miller's algorithm) otherwise.
     * 
     *   The exponential integral is given by
     *          \f[
     *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
     *          \f]
     * 
     *   @param  __n  The order of the exponential integral function.
     *   @param  __x  The argument of the exponential integral function.
     *   @return  The exponential integral.
     */
    template<typename _Tp>
    _Tp
    __expint_En_recursion(unsigned int __n, _Tp __x)
    {
      _Tp __En;
      _Tp __E1 = __expint_E1(__x);
      if (__x < _Tp(__n))
        {
          //  Forward recursion is stable only for n < x.
          __En = __E1;
          for (unsigned int __j = 2; __j < __n; ++__j)
            __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1);
        }
      else
        {
          //  Backward recursion is stable only for n >= x.
          __En = _Tp(1);
          const int __N = __n + 20;  //  TODO: Check this starting number.
          _Tp __save = _Tp(0);
          for (int __j = __N; __j > 0; --__j)
            {
              __En = (std::exp(-__x) - __j * __En) / __x;
              if (__j == __n)
                __save = __En;
            }
            _Tp __norm = __En / __E1;
            __En /= __norm;
        }

      return __En;
    }

    /**
     *   @brief Return the exponential integral @f$ Ei(x) @f$
     *          by series summation.
     * 
     *   The exponential integral is given by
     *          \f[
     *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
     *          \f]
     * 
     *   @param  __x  The argument of the exponential integral function.
     *   @return  The exponential integral.
     */
    template<typename _Tp>
    _Tp
    __expint_Ei_series(_Tp __x)
    {
      _Tp __term = _Tp(1);
      _Tp __sum = _Tp(0);
      const unsigned int __max_iter = 1000;
      for (unsigned int __i = 1; __i < __max_iter; ++__i)
        {
          __term *= __x / __i;
          __sum += __term / __i;
          if (__term < std::numeric_limits<_Tp>::epsilon() * __sum)
            break;
        }

      return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x);
    }


    /**
     *   @brief Return the exponential integral @f$ Ei(x) @f$
     *          by asymptotic expansion.
     * 
     *   The exponential integral is given by
     *          \f[
     *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
     *          \f]
     * 
     *   @param  __x  The argument of the exponential integral function.
     *   @return  The exponential integral.
     */
    template<typename _Tp>
    _Tp
    __expint_Ei_asymp(_Tp __x)
    {
      _Tp __term = _Tp(1);
      _Tp __sum = _Tp(1);
      const unsigned int __max_iter = 1000;
      for (unsigned int __i = 1; __i < __max_iter; ++__i)
        {
          _Tp __prev = __term;
          __term *= __i / __x;
          if (__term < std::numeric_limits<_Tp>::epsilon())
            break;
          if (__term >= __prev)
            break;
          __sum += __term;
        }

      return std::exp(__x) * __sum / __x;
    }


    /**
     *   @brief Return the exponential integral @f$ Ei(x) @f$.
     * 
     *   The exponential integral is given by
     *          \f[
     *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
     *          \f]
     * 
     *   @param  __x  The argument of the exponential integral function.
     *   @return  The exponential integral.
     */
    template<typename _Tp>
    _Tp
    __expint_Ei(_Tp __x)
    {
      if (__x < _Tp(0))
        return -__expint_E1(-__x);
      else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon()))
        return __expint_Ei_series(__x);
      else
        return __expint_Ei_asymp(__x);
    }


    /**
     *   @brief Return the exponential integral @f$ E_1(x) @f$.
     * 
     *   The exponential integral is given by
     *          \f[
     *            E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
     *          \f]
     * 
     *   @param  __x  The argument of the exponential integral function.
     *   @return  The exponential integral.
     */
    template<typename _Tp>
    _Tp
    __expint_E1(_Tp __x)
    {
      if (__x < _Tp(0))
        return -__expint_Ei(-__x);
      else if (__x < _Tp(1))
        return __expint_E1_series(__x);
      else if (__x < _Tp(100))  //  TODO: Find a good asymptotic switch point.
        return __expint_En_cont_frac(1, __x);
      else
        return __expint_E1_asymp(__x);
    }


    /**
     *   @brief Return the exponential integral @f$ E_n(x) @f$
     *          for large argument.
     * 
     *   The exponential integral is given by
     *          \f[
     *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
     *          \f]
     * 
     *   This is something of an extension.
     * 
     *   @param  __n  The order of the exponential integral function.
     *   @param  __x  The argument of the exponential integral function.
     *   @return  The exponential integral.
     */
    template<typename _Tp>
    _Tp
    __expint_asymp(unsigned int __n, _Tp __x)
    {
      _Tp __term = _Tp(1);
      _Tp __sum = _Tp(1);
      for (unsigned int __i = 1; __i <= __n; ++__i)
        {
          _Tp __prev = __term;
          __term *= -(__n - __i + 1) / __x;
          if (std::abs(__term) > std::abs(__prev))
            break;
          __sum += __term;
        }

      return std::exp(-__x) * __sum / __x;
    }


    /**
     *   @brief Return the exponential integral @f$ E_n(x) @f$
     *          for large order.
     * 
     *   The exponential integral is given by
     *          \f[
     *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
     *          \f]
     *        
     *   This is something of an extension.
     * 
     *   @param  __n  The order of the exponential integral function.
     *   @param  __x  The argument of the exponential integral function.
     *   @return  The exponential integral.
     */
    template<typename _Tp>
    _Tp
    __expint_large_n(unsigned int __n, _Tp __x)
    {
      const _Tp __xpn = __x + __n;
      const _Tp __xpn2 = __xpn * __xpn;
      _Tp __term = _Tp(1);
      _Tp __sum = _Tp(1);
      for (unsigned int __i = 1; __i <= __n; ++__i)
        {
          _Tp __prev = __term;
          __term *= (__n - 2 * (__i - 1) * __x) / __xpn2;
          if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
            break;
          __sum += __term;
        }

      return std::exp(-__x) * __sum / __xpn;
    }


    /**
     *   @brief Return the exponential integral @f$ E_n(x) @f$.
     * 
     *   The exponential integral is given by
     *          \f[
     *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
     *          \f]
     *   This is something of an extension.
     * 
     *   @param  __n  The order of the exponential integral function.
     *   @param  __x  The argument of the exponential integral function.
     *   @return  The exponential integral.
     */
    template<typename _Tp>
    _Tp
    __expint(unsigned int __n, _Tp __x)
    {
      //  Return NaN on NaN input.
      if (__isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__n <= 1 && __x == _Tp(0))
        return std::numeric_limits<_Tp>::infinity();
      else
        {
          _Tp __E0 = std::exp(__x) / __x;
          if (__n == 0)
            return __E0;

          _Tp __E1 = __expint_E1(__x);
          if (__n == 1)
            return __E1;

          if (__x == _Tp(0))
            return _Tp(1) / static_cast<_Tp>(__n - 1);

          _Tp __En = __expint_En_recursion(__n, __x);

          return __En;
        }
    }


    /**
     *   @brief Return the exponential integral @f$ Ei(x) @f$.
     * 
     *   The exponential integral is given by
     *   \f[
     *     Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
     *   \f]
     * 
     *   @param  __x  The argument of the exponential integral function.
     *   @return  The exponential integral.
     */
    template<typename _Tp>
    inline _Tp
    __expint(_Tp __x)
    {
      if (__isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else
        return __expint_Ei(__x);
    }

  _GLIBCXX_END_NAMESPACE_VERSION
  } // namespace std::tr1::__detail
}
}

#endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC

Filemanager

Name Type Size Permission Actions
array File 6.8 KB 0644
bessel_function.tcc File 21.6 KB 0644
beta_function.tcc File 5.47 KB 0644
ccomplex File 1.23 KB 0644
cctype File 1.38 KB 0644
cfenv File 1.96 KB 0644
cfloat File 1.35 KB 0644
cinttypes File 2.2 KB 0644
climits File 1.42 KB 0644
cmath File 36.55 KB 0644
complex File 12.04 KB 0644
complex.h File 1.23 KB 0644
cstdarg File 1.22 KB 0644
cstdbool File 1.31 KB 0644
cstdint File 2.56 KB 0644
cstdio File 1.44 KB 0644
cstdlib File 1.74 KB 0644
ctgmath File 1.22 KB 0644
ctime File 1.21 KB 0644
ctype.h File 1.18 KB 0644
cwchar File 1.67 KB 0644
cwctype File 1.42 KB 0644
ell_integral.tcc File 26.85 KB 0644
exp_integral.tcc File 15.41 KB 0644
fenv.h File 1.18 KB 0644
float.h File 1.18 KB 0644
functional File 69.15 KB 0644
functional_hash.h File 5.7 KB 0644
gamma.tcc File 13.97 KB 0644
hashtable.h File 40.56 KB 0644
hashtable_policy.h File 24.64 KB 0644
hypergeometric.tcc File 27.07 KB 0644
inttypes.h File 1.24 KB 0644
legendre_function.tcc File 10.32 KB 0644
limits.h File 1.19 KB 0644
math.h File 4.45 KB 0644
memory File 1.75 KB 0644
modified_bessel_func.tcc File 15.35 KB 0644
poly_hermite.tcc File 3.61 KB 0644
poly_laguerre.tcc File 11.08 KB 0644
random File 1.55 KB 0644
random.h File 71.48 KB 0644
random.tcc File 52.73 KB 0644
regex File 90.77 KB 0644
riemann_zeta.tcc File 13.34 KB 0644
shared_ptr.h File 31.91 KB 0644
special_function_util.h File 4.71 KB 0644
stdarg.h File 1.19 KB 0644
stdbool.h File 1.19 KB 0644
stdint.h File 1.19 KB 0644
stdio.h File 1.18 KB 0644
stdlib.h File 1.45 KB 0644
tgmath.h File 1.23 KB 0644
tuple File 11.83 KB 0644
type_traits File 18.57 KB 0644
unordered_map File 1.54 KB 0644
unordered_map.h File 9.98 KB 0644
unordered_set File 1.54 KB 0644
unordered_set.h File 9.32 KB 0644
utility File 3.15 KB 0644
wchar.h File 1.22 KB 0644
wctype.h File 1.23 KB 0644