[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@18.226.248.119: ~ $
// TR1 functional header -*- C++ -*-

// Copyright (C) 2004-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file tr1/functional
 *  This is a TR1 C++ Library header.
 */

#ifndef _GLIBCXX_TR1_FUNCTIONAL
#define _GLIBCXX_TR1_FUNCTIONAL 1

#pragma GCC system_header

#include <bits/c++config.h>
#include <bits/stl_function.h>

#include <typeinfo>
#include <new>
#include <tr1/tuple>
#include <tr1/type_traits>
#include <bits/stringfwd.h>
#include <tr1/functional_hash.h>
#include <ext/type_traits.h>
#include <bits/move.h> // for std::__addressof
#if __cplusplus >= 201103L
#  include <type_traits> // for integral_constant, true_type, false_type
#endif

namespace std _GLIBCXX_VISIBILITY(default)
{
#if __cplusplus >= 201103L
_GLIBCXX_BEGIN_NAMESPACE_VERSION
  template<int> struct _Placeholder;
  template<typename> class _Bind;
  template<typename, typename> class _Bind_result;
_GLIBCXX_END_NAMESPACE_VERSION
#endif

namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  template<typename _MemberPointer>
    class _Mem_fn;
  template<typename _Tp, typename _Class>
    _Mem_fn<_Tp _Class::*>
    mem_fn(_Tp _Class::*);

  /**
   *  Actual implementation of _Has_result_type, which uses SFINAE to
   *  determine if the type _Tp has a publicly-accessible member type
   *  result_type.
  */
  template<typename _Tp>
    class _Has_result_type_helper : __sfinae_types
    {
      template<typename _Up>
        struct _Wrap_type
	{ };

      template<typename _Up>
        static __one __test(_Wrap_type<typename _Up::result_type>*);

      template<typename _Up>
        static __two __test(...);

    public:
      static const bool value = sizeof(__test<_Tp>(0)) == 1;
    };

  template<typename _Tp>
    struct _Has_result_type
    : integral_constant<bool,
	      _Has_result_type_helper<typename remove_cv<_Tp>::type>::value>
    { };

  /**
   *  
  */
  /// If we have found a result_type, extract it.
  template<bool _Has_result_type, typename _Functor>
    struct _Maybe_get_result_type
    { };

  template<typename _Functor>
    struct _Maybe_get_result_type<true, _Functor>
    {
      typedef typename _Functor::result_type result_type;
    };

  /**
   *  Base class for any function object that has a weak result type, as
   *  defined in 3.3/3 of TR1.
  */
  template<typename _Functor>
    struct _Weak_result_type_impl
    : _Maybe_get_result_type<_Has_result_type<_Functor>::value, _Functor>
    {
    };

  /// Retrieve the result type for a function type.
  template<typename _Res, typename... _ArgTypes> 
    struct _Weak_result_type_impl<_Res(_ArgTypes...)>
    {
      typedef _Res result_type;
    };

  /// Retrieve the result type for a function reference.
  template<typename _Res, typename... _ArgTypes> 
    struct _Weak_result_type_impl<_Res(&)(_ArgTypes...)>
    {
      typedef _Res result_type;
    };

  /// Retrieve the result type for a function pointer.
  template<typename _Res, typename... _ArgTypes> 
    struct _Weak_result_type_impl<_Res(*)(_ArgTypes...)>
    {
      typedef _Res result_type;
    };

  /// Retrieve result type for a member function pointer. 
  template<typename _Res, typename _Class, typename... _ArgTypes> 
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)>
    {
      typedef _Res result_type;
    };

  /// Retrieve result type for a const member function pointer. 
  template<typename _Res, typename _Class, typename... _ArgTypes> 
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) const>
    {
      typedef _Res result_type;
    };

  /// Retrieve result type for a volatile member function pointer. 
  template<typename _Res, typename _Class, typename... _ArgTypes> 
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) volatile>
    {
      typedef _Res result_type;
    };

  /// Retrieve result type for a const volatile member function pointer. 
  template<typename _Res, typename _Class, typename... _ArgTypes> 
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)const volatile>
    {
      typedef _Res result_type;
    };

  /**
   *  Strip top-level cv-qualifiers from the function object and let
   *  _Weak_result_type_impl perform the real work.
  */
  template<typename _Functor>
    struct _Weak_result_type
    : _Weak_result_type_impl<typename remove_cv<_Functor>::type>
    {
    };

  template<typename _Signature>
    class result_of;

  /**
   *  Actual implementation of result_of. When _Has_result_type is
   *  true, gets its result from _Weak_result_type. Otherwise, uses
   *  the function object's member template result to extract the
   *  result type.
  */
  template<bool _Has_result_type, typename _Signature>
    struct _Result_of_impl;

  // Handle member data pointers using _Mem_fn's logic
  template<typename _Res, typename _Class, typename _T1>
    struct _Result_of_impl<false, _Res _Class::*(_T1)>
    {
      typedef typename _Mem_fn<_Res _Class::*>
                ::template _Result_type<_T1>::type type;
    };

  /**
   * Determine whether we can determine a result type from @c Functor 
   * alone.
   */ 
  template<typename _Functor, typename... _ArgTypes>
    class result_of<_Functor(_ArgTypes...)>
    : public _Result_of_impl<
               _Has_result_type<_Weak_result_type<_Functor> >::value,
               _Functor(_ArgTypes...)>
    {
    };

  /// We already know the result type for @c Functor; use it.
  template<typename _Functor, typename... _ArgTypes>
    struct _Result_of_impl<true, _Functor(_ArgTypes...)>
    {
      typedef typename _Weak_result_type<_Functor>::result_type type;
    };

  /**
   * We need to compute the result type for this invocation the hard 
   * way.
   */
  template<typename _Functor, typename... _ArgTypes>
    struct _Result_of_impl<false, _Functor(_ArgTypes...)>
    {
      typedef typename _Functor
                ::template result<_Functor(_ArgTypes...)>::type type;
    };

  /**
   * It is unsafe to access ::result when there are zero arguments, so we 
   * return @c void instead.
   */
  template<typename _Functor>
    struct _Result_of_impl<false, _Functor()>
    {
      typedef void type;
    };

  /// Determines if the type _Tp derives from unary_function.
  template<typename _Tp>
    struct _Derives_from_unary_function : __sfinae_types
    {
    private:
      template<typename _T1, typename _Res>
        static __one __test(const volatile unary_function<_T1, _Res>*);

      // It's tempting to change "..." to const volatile void*, but
      // that fails when _Tp is a function type.
      static __two __test(...);

    public:
      static const bool value = sizeof(__test((_Tp*)0)) == 1;
    };

  /// Determines if the type _Tp derives from binary_function.
  template<typename _Tp>
    struct _Derives_from_binary_function : __sfinae_types
    {
    private:
      template<typename _T1, typename _T2, typename _Res>
        static __one __test(const volatile binary_function<_T1, _T2, _Res>*);

      // It's tempting to change "..." to const volatile void*, but
      // that fails when _Tp is a function type.
      static __two __test(...);

    public:
      static const bool value = sizeof(__test((_Tp*)0)) == 1;
    };

  /// Turns a function type into a function pointer type
  template<typename _Tp, bool _IsFunctionType = is_function<_Tp>::value>
    struct _Function_to_function_pointer
    {
      typedef _Tp type;
    };

  template<typename _Tp>
    struct _Function_to_function_pointer<_Tp, true>
    {
      typedef _Tp* type;
    };

  /**
   * Invoke a function object, which may be either a member pointer or a
   * function object. The first parameter will tell which.
   */
  template<typename _Functor, typename... _Args>
    inline
    typename __gnu_cxx::__enable_if<
             (!is_member_pointer<_Functor>::value
              && !is_function<_Functor>::value
              && !is_function<typename remove_pointer<_Functor>::type>::value),
             typename result_of<_Functor(_Args...)>::type
           >::__type
    __invoke(_Functor& __f, _Args&... __args)
    {
      return __f(__args...);
    }

  template<typename _Functor, typename... _Args>
    inline
    typename __gnu_cxx::__enable_if<
             (is_member_pointer<_Functor>::value
              && !is_function<_Functor>::value
              && !is_function<typename remove_pointer<_Functor>::type>::value),
             typename result_of<_Functor(_Args...)>::type
           >::__type
    __invoke(_Functor& __f, _Args&... __args)
    {
      return mem_fn(__f)(__args...);
    }

  // To pick up function references (that will become function pointers)
  template<typename _Functor, typename... _Args>
    inline
    typename __gnu_cxx::__enable_if<
             (is_pointer<_Functor>::value
              && is_function<typename remove_pointer<_Functor>::type>::value),
             typename result_of<_Functor(_Args...)>::type
           >::__type
    __invoke(_Functor __f, _Args&... __args)
    {
      return __f(__args...);
    }

  /**
   *  Knowing which of unary_function and binary_function _Tp derives
   *  from, derives from the same and ensures that reference_wrapper
   *  will have a weak result type. See cases below.
   */
  template<bool _Unary, bool _Binary, typename _Tp>
    struct _Reference_wrapper_base_impl;

  // Not a unary_function or binary_function, so try a weak result type.
  template<typename _Tp>
    struct _Reference_wrapper_base_impl<false, false, _Tp>
    : _Weak_result_type<_Tp>
    { };

  // unary_function but not binary_function
  template<typename _Tp>
    struct _Reference_wrapper_base_impl<true, false, _Tp>
    : unary_function<typename _Tp::argument_type,
		     typename _Tp::result_type>
    { };

  // binary_function but not unary_function
  template<typename _Tp>
    struct _Reference_wrapper_base_impl<false, true, _Tp>
    : binary_function<typename _Tp::first_argument_type,
		      typename _Tp::second_argument_type,
		      typename _Tp::result_type>
    { };

  // Both unary_function and binary_function. Import result_type to
  // avoid conflicts.
   template<typename _Tp>
    struct _Reference_wrapper_base_impl<true, true, _Tp>
    : unary_function<typename _Tp::argument_type,
		     typename _Tp::result_type>,
      binary_function<typename _Tp::first_argument_type,
		      typename _Tp::second_argument_type,
		      typename _Tp::result_type>
    {
      typedef typename _Tp::result_type result_type;
    };

  /**
   *  Derives from unary_function or binary_function when it
   *  can. Specializations handle all of the easy cases. The primary
   *  template determines what to do with a class type, which may
   *  derive from both unary_function and binary_function.
  */
  template<typename _Tp>
    struct _Reference_wrapper_base
    : _Reference_wrapper_base_impl<
      _Derives_from_unary_function<_Tp>::value,
      _Derives_from_binary_function<_Tp>::value,
      _Tp>
    { };

  // - a function type (unary)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res(_T1)>
    : unary_function<_T1, _Res>
    { };

  // - a function type (binary)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res(_T1, _T2)>
    : binary_function<_T1, _T2, _Res>
    { };

  // - a function pointer type (unary)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res(*)(_T1)>
    : unary_function<_T1, _Res>
    { };

  // - a function pointer type (binary)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
    : binary_function<_T1, _T2, _Res>
    { };

  // - a pointer to member function type (unary, no qualifiers)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res (_T1::*)()>
    : unary_function<_T1*, _Res>
    { };

  // - a pointer to member function type (binary, no qualifiers)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
    : binary_function<_T1*, _T2, _Res>
    { };

  // - a pointer to member function type (unary, const)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res (_T1::*)() const>
    : unary_function<const _T1*, _Res>
    { };

  // - a pointer to member function type (binary, const)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
    : binary_function<const _T1*, _T2, _Res>
    { };

  // - a pointer to member function type (unary, volatile)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
    : unary_function<volatile _T1*, _Res>
    { };

  // - a pointer to member function type (binary, volatile)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
    : binary_function<volatile _T1*, _T2, _Res>
    { };

  // - a pointer to member function type (unary, const volatile)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
    : unary_function<const volatile _T1*, _Res>
    { };

  // - a pointer to member function type (binary, const volatile)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
    : binary_function<const volatile _T1*, _T2, _Res>
    { };

  /// reference_wrapper
  template<typename _Tp>
    class reference_wrapper
    : public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
    {
      // If _Tp is a function type, we can't form result_of<_Tp(...)>,
      // so turn it into a function pointer type.
      typedef typename _Function_to_function_pointer<_Tp>::type
        _M_func_type;

      _Tp* _M_data;
    public:
      typedef _Tp type;

      explicit
      reference_wrapper(_Tp& __indata)
      : _M_data(std::__addressof(__indata))
      { }

      reference_wrapper(const reference_wrapper<_Tp>& __inref):
      _M_data(__inref._M_data)
      { }

      reference_wrapper&
      operator=(const reference_wrapper<_Tp>& __inref)
      {
        _M_data = __inref._M_data;
        return *this;
      }

      operator _Tp&() const
      { return this->get(); }

      _Tp&
      get() const
      { return *_M_data; }

      template<typename... _Args>
        typename result_of<_M_func_type(_Args...)>::type
        operator()(_Args&... __args) const
        {
	  return __invoke(get(), __args...);
	}
    };


  // Denotes a reference should be taken to a variable.
  template<typename _Tp>
    inline reference_wrapper<_Tp>
    ref(_Tp& __t)
    { return reference_wrapper<_Tp>(__t); }

  // Denotes a const reference should be taken to a variable.
  template<typename _Tp>
    inline reference_wrapper<const _Tp>
    cref(const _Tp& __t)
    { return reference_wrapper<const _Tp>(__t); }

  template<typename _Tp>
    inline reference_wrapper<_Tp>
    ref(reference_wrapper<_Tp> __t)
    { return ref(__t.get()); }

  template<typename _Tp>
    inline reference_wrapper<const _Tp>
    cref(reference_wrapper<_Tp> __t)
    { return cref(__t.get()); }

  template<typename _Tp, bool>
    struct _Mem_fn_const_or_non
    {
      typedef const _Tp& type;
    };

  template<typename _Tp>
    struct _Mem_fn_const_or_non<_Tp, false>
    {
      typedef _Tp& type;
    };

  /**
   * Derives from @c unary_function or @c binary_function, or perhaps
   * nothing, depending on the number of arguments provided. The
   * primary template is the basis case, which derives nothing.
   */
  template<typename _Res, typename... _ArgTypes> 
    struct _Maybe_unary_or_binary_function { };

  /// Derives from @c unary_function, as appropriate. 
  template<typename _Res, typename _T1> 
    struct _Maybe_unary_or_binary_function<_Res, _T1>
    : std::unary_function<_T1, _Res> { };

  /// Derives from @c binary_function, as appropriate. 
  template<typename _Res, typename _T1, typename _T2> 
    struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
    : std::binary_function<_T1, _T2, _Res> { };

  /// Implementation of @c mem_fn for member function pointers.
  template<typename _Res, typename _Class, typename... _ArgTypes>
    class _Mem_fn<_Res (_Class::*)(_ArgTypes...)>
    : public _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...>
    {
      typedef _Res (_Class::*_Functor)(_ArgTypes...);

      template<typename _Tp>
        _Res
        _M_call(_Tp& __object, const volatile _Class *, 
                _ArgTypes... __args) const
        { return (__object.*__pmf)(__args...); }

      template<typename _Tp>
        _Res
        _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
        { return ((*__ptr).*__pmf)(__args...); }

    public:
      typedef _Res result_type;

      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }

      // Handle objects
      _Res
      operator()(_Class& __object, _ArgTypes... __args) const
      { return (__object.*__pmf)(__args...); }

      // Handle pointers
      _Res
      operator()(_Class* __object, _ArgTypes... __args) const
      { return (__object->*__pmf)(__args...); }

      // Handle smart pointers, references and pointers to derived
      template<typename _Tp>
        _Res
	operator()(_Tp& __object, _ArgTypes... __args) const
        { return _M_call(__object, &__object, __args...); }

    private:
      _Functor __pmf;
    };

  /// Implementation of @c mem_fn for const member function pointers.
  template<typename _Res, typename _Class, typename... _ArgTypes>
    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const>
    : public _Maybe_unary_or_binary_function<_Res, const _Class*, 
					     _ArgTypes...>
    {
      typedef _Res (_Class::*_Functor)(_ArgTypes...) const;

      template<typename _Tp>
        _Res
        _M_call(_Tp& __object, const volatile _Class *, 
                _ArgTypes... __args) const
        { return (__object.*__pmf)(__args...); }

      template<typename _Tp>
        _Res
        _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
        { return ((*__ptr).*__pmf)(__args...); }

    public:
      typedef _Res result_type;

      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }

      // Handle objects
      _Res
      operator()(const _Class& __object, _ArgTypes... __args) const
      { return (__object.*__pmf)(__args...); }

      // Handle pointers
      _Res
      operator()(const _Class* __object, _ArgTypes... __args) const
      { return (__object->*__pmf)(__args...); }

      // Handle smart pointers, references and pointers to derived
      template<typename _Tp>
        _Res operator()(_Tp& __object, _ArgTypes... __args) const
        { return _M_call(__object, &__object, __args...); }

    private:
      _Functor __pmf;
    };

  /// Implementation of @c mem_fn for volatile member function pointers.
  template<typename _Res, typename _Class, typename... _ArgTypes>
    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) volatile>
    : public _Maybe_unary_or_binary_function<_Res, volatile _Class*, 
					     _ArgTypes...>
    {
      typedef _Res (_Class::*_Functor)(_ArgTypes...) volatile;

      template<typename _Tp>
        _Res
        _M_call(_Tp& __object, const volatile _Class *, 
                _ArgTypes... __args) const
        { return (__object.*__pmf)(__args...); }

      template<typename _Tp>
        _Res
        _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
        { return ((*__ptr).*__pmf)(__args...); }

    public:
      typedef _Res result_type;

      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }

      // Handle objects
      _Res
      operator()(volatile _Class& __object, _ArgTypes... __args) const
      { return (__object.*__pmf)(__args...); }

      // Handle pointers
      _Res
      operator()(volatile _Class* __object, _ArgTypes... __args) const
      { return (__object->*__pmf)(__args...); }

      // Handle smart pointers, references and pointers to derived
      template<typename _Tp>
        _Res
	operator()(_Tp& __object, _ArgTypes... __args) const
        { return _M_call(__object, &__object, __args...); }

    private:
      _Functor __pmf;
    };

  /// Implementation of @c mem_fn for const volatile member function pointers.
  template<typename _Res, typename _Class, typename... _ArgTypes>
    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const volatile>
    : public _Maybe_unary_or_binary_function<_Res, const volatile _Class*, 
					     _ArgTypes...>
    {
      typedef _Res (_Class::*_Functor)(_ArgTypes...) const volatile;

      template<typename _Tp>
        _Res
        _M_call(_Tp& __object, const volatile _Class *, 
                _ArgTypes... __args) const
        { return (__object.*__pmf)(__args...); }

      template<typename _Tp>
        _Res
        _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
        { return ((*__ptr).*__pmf)(__args...); }

    public:
      typedef _Res result_type;

      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }

      // Handle objects
      _Res 
      operator()(const volatile _Class& __object, _ArgTypes... __args) const
      { return (__object.*__pmf)(__args...); }

      // Handle pointers
      _Res 
      operator()(const volatile _Class* __object, _ArgTypes... __args) const
      { return (__object->*__pmf)(__args...); }

      // Handle smart pointers, references and pointers to derived
      template<typename _Tp>
        _Res operator()(_Tp& __object, _ArgTypes... __args) const
        { return _M_call(__object, &__object, __args...); }

    private:
      _Functor __pmf;
    };


  template<typename _Res, typename _Class>
    class _Mem_fn<_Res _Class::*>
    {
      // This bit of genius is due to Peter Dimov, improved slightly by
      // Douglas Gregor.
      template<typename _Tp>
        _Res&
        _M_call(_Tp& __object, _Class *) const
        { return __object.*__pm; }

      template<typename _Tp, typename _Up>
        _Res&
        _M_call(_Tp& __object, _Up * const *) const
        { return (*__object).*__pm; }

      template<typename _Tp, typename _Up>
        const _Res&
        _M_call(_Tp& __object, const _Up * const *) const
        { return (*__object).*__pm; }

      template<typename _Tp>
        const _Res&
        _M_call(_Tp& __object, const _Class *) const
        { return __object.*__pm; }

      template<typename _Tp>
        const _Res&
        _M_call(_Tp& __ptr, const volatile void*) const
        { return (*__ptr).*__pm; }

      template<typename _Tp> static _Tp& __get_ref();

      template<typename _Tp>
        static __sfinae_types::__one __check_const(_Tp&, _Class*);
      template<typename _Tp, typename _Up>
        static __sfinae_types::__one __check_const(_Tp&, _Up * const *);
      template<typename _Tp, typename _Up>
        static __sfinae_types::__two __check_const(_Tp&, const _Up * const *);
      template<typename _Tp>
        static __sfinae_types::__two __check_const(_Tp&, const _Class*);
      template<typename _Tp>
        static __sfinae_types::__two __check_const(_Tp&, const volatile void*);

    public:
      template<typename _Tp>
        struct _Result_type
	: _Mem_fn_const_or_non<_Res,
	  (sizeof(__sfinae_types::__two)
	   == sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))>
        { };

      template<typename _Signature>
        struct result;

      template<typename _CVMem, typename _Tp>
        struct result<_CVMem(_Tp)>
	: public _Result_type<_Tp> { };

      template<typename _CVMem, typename _Tp>
        struct result<_CVMem(_Tp&)>
	: public _Result_type<_Tp> { };

      explicit
      _Mem_fn(_Res _Class::*__pm) : __pm(__pm) { }

      // Handle objects
      _Res&
      operator()(_Class& __object) const
      { return __object.*__pm; }

      const _Res&
      operator()(const _Class& __object) const
      { return __object.*__pm; }

      // Handle pointers
      _Res&
      operator()(_Class* __object) const
      { return __object->*__pm; }

      const _Res&
      operator()(const _Class* __object) const
      { return __object->*__pm; }

      // Handle smart pointers and derived
      template<typename _Tp>
        typename _Result_type<_Tp>::type
        operator()(_Tp& __unknown) const
        { return _M_call(__unknown, &__unknown); }

    private:
      _Res _Class::*__pm;
    };

  /**
   *  @brief Returns a function object that forwards to the member
   *  pointer @a pm.
   */
  template<typename _Tp, typename _Class>
    inline _Mem_fn<_Tp _Class::*>
    mem_fn(_Tp _Class::* __pm)
    {
      return _Mem_fn<_Tp _Class::*>(__pm);
    }

  /**
   *  @brief Determines if the given type _Tp is a function object
   *  should be treated as a subexpression when evaluating calls to
   *  function objects returned by bind(). [TR1 3.6.1]
   */
  template<typename _Tp>
    struct is_bind_expression
    { static const bool value = false; };

  template<typename _Tp>
    const bool is_bind_expression<_Tp>::value;

  /**
   *  @brief Determines if the given type _Tp is a placeholder in a
   *  bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
   */
  template<typename _Tp>
    struct is_placeholder
    { static const int value = 0; };

  template<typename _Tp>
    const int is_placeholder<_Tp>::value;

  /// The type of placeholder objects defined by libstdc++.
  template<int _Num> struct _Placeholder { };

_GLIBCXX_END_NAMESPACE_VERSION

  /** @namespace std::tr1::placeholders
   *  @brief Sub-namespace for tr1/functional.
   */
  namespace placeholders 
  { 
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
    /*  Define a large number of placeholders. There is no way to
     *  simplify this with variadic templates, because we're introducing
     *  unique names for each.
     */
    namespace 
    {
      _Placeholder<1> _1;
      _Placeholder<2> _2;
      _Placeholder<3> _3;
      _Placeholder<4> _4;
      _Placeholder<5> _5;
      _Placeholder<6> _6;
      _Placeholder<7> _7;
      _Placeholder<8> _8;
      _Placeholder<9> _9;
      _Placeholder<10> _10;
      _Placeholder<11> _11;
      _Placeholder<12> _12;
      _Placeholder<13> _13;
      _Placeholder<14> _14;
      _Placeholder<15> _15;
      _Placeholder<16> _16;
      _Placeholder<17> _17;
      _Placeholder<18> _18;
      _Placeholder<19> _19;
      _Placeholder<20> _20;
      _Placeholder<21> _21;
      _Placeholder<22> _22;
      _Placeholder<23> _23;
      _Placeholder<24> _24;
      _Placeholder<25> _25;
      _Placeholder<26> _26;
      _Placeholder<27> _27;
      _Placeholder<28> _28;
      _Placeholder<29> _29;
    } 
  _GLIBCXX_END_NAMESPACE_VERSION
  }

_GLIBCXX_BEGIN_NAMESPACE_VERSION
  /**
   *  Partial specialization of is_placeholder that provides the placeholder
   *  number for the placeholder objects defined by libstdc++.
   */
  template<int _Num>
    struct is_placeholder<_Placeholder<_Num> >
    { static const int value = _Num; };

  template<int _Num>
    const int is_placeholder<_Placeholder<_Num> >::value;

#if __cplusplus >= 201103L
  template<int _Num>
    struct is_placeholder<std::_Placeholder<_Num>>
    : std::integral_constant<int, _Num>
    { };

  template<int _Num>
    struct is_placeholder<const std::_Placeholder<_Num>>
    : std::integral_constant<int, _Num>
    { };
#endif

  /**
   * Stores a tuple of indices. Used by bind() to extract the elements
   * in a tuple. 
   */
  template<int... _Indexes>
    struct _Index_tuple { };

  /// Builds an _Index_tuple<0, 1, 2, ..., _Num-1>.
  template<std::size_t _Num, typename _Tuple = _Index_tuple<> >
    struct _Build_index_tuple;
 
  template<std::size_t _Num, int... _Indexes> 
    struct _Build_index_tuple<_Num, _Index_tuple<_Indexes...> >
    : _Build_index_tuple<_Num - 1, 
                         _Index_tuple<_Indexes..., sizeof...(_Indexes)> >
    {
    };

  template<int... _Indexes>
    struct _Build_index_tuple<0, _Index_tuple<_Indexes...> >
    {
      typedef _Index_tuple<_Indexes...> __type;
    };

  /** 
   * Used by _Safe_tuple_element to indicate that there is no tuple
   * element at this position.
   */
  struct _No_tuple_element;

  /**
   * Implementation helper for _Safe_tuple_element. This primary
   * template handles the case where it is safe to use @c
   * tuple_element.
   */
  template<int __i, typename _Tuple, bool _IsSafe>
    struct _Safe_tuple_element_impl
    : tuple_element<__i, _Tuple> { };

  /**
   * Implementation helper for _Safe_tuple_element. This partial
   * specialization handles the case where it is not safe to use @c
   * tuple_element. We just return @c _No_tuple_element.
   */
  template<int __i, typename _Tuple>
    struct _Safe_tuple_element_impl<__i, _Tuple, false>
    {
      typedef _No_tuple_element type;
    };

  /**
   * Like tuple_element, but returns @c _No_tuple_element when
   * tuple_element would return an error.
   */
 template<int __i, typename _Tuple>
   struct _Safe_tuple_element
   : _Safe_tuple_element_impl<__i, _Tuple, 
                              (__i >= 0 && __i < tuple_size<_Tuple>::value)>
   {
   };

  /**
   *  Maps an argument to bind() into an actual argument to the bound
   *  function object [TR1 3.6.3/5]. Only the first parameter should
   *  be specified: the rest are used to determine among the various
   *  implementations. Note that, although this class is a function
   *  object, it isn't entirely normal because it takes only two
   *  parameters regardless of the number of parameters passed to the
   *  bind expression. The first parameter is the bound argument and
   *  the second parameter is a tuple containing references to the
   *  rest of the arguments.
   */
  template<typename _Arg,
           bool _IsBindExp = is_bind_expression<_Arg>::value,
           bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
    class _Mu;

  /**
   *  If the argument is reference_wrapper<_Tp>, returns the
   *  underlying reference. [TR1 3.6.3/5 bullet 1]
   */
  template<typename _Tp>
    class _Mu<reference_wrapper<_Tp>, false, false>
    {
    public:
      typedef _Tp& result_type;

      /* Note: This won't actually work for const volatile
       * reference_wrappers, because reference_wrapper::get() is const
       * but not volatile-qualified. This might be a defect in the TR.
       */
      template<typename _CVRef, typename _Tuple>
        result_type
        operator()(_CVRef& __arg, const _Tuple&) const volatile
        { return __arg.get(); }
    };

  /**
   *  If the argument is a bind expression, we invoke the underlying
   *  function object with the same cv-qualifiers as we are given and
   *  pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
   */
  template<typename _Arg>
    class _Mu<_Arg, true, false>
    {
    public:
      template<typename _Signature> class result;

      // Determine the result type when we pass the arguments along. This
      // involves passing along the cv-qualifiers placed on _Mu and
      // unwrapping the argument bundle.
      template<typename _CVMu, typename _CVArg, typename... _Args>
        class result<_CVMu(_CVArg, tuple<_Args...>)>
	: public result_of<_CVArg(_Args...)> { };

      template<typename _CVArg, typename... _Args>
        typename result_of<_CVArg(_Args...)>::type
        operator()(_CVArg& __arg,
		   const tuple<_Args...>& __tuple) const volatile
        {
	  // Construct an index tuple and forward to __call
	  typedef typename _Build_index_tuple<sizeof...(_Args)>::__type
	    _Indexes;
	  return this->__call(__arg, __tuple, _Indexes());
	}

    private:
      // Invokes the underlying function object __arg by unpacking all
      // of the arguments in the tuple. 
      template<typename _CVArg, typename... _Args, int... _Indexes>
        typename result_of<_CVArg(_Args...)>::type
        __call(_CVArg& __arg, const tuple<_Args...>& __tuple,
	       const _Index_tuple<_Indexes...>&) const volatile
        {
	  return __arg(tr1::get<_Indexes>(__tuple)...);
	}
    };

  /**
   *  If the argument is a placeholder for the Nth argument, returns
   *  a reference to the Nth argument to the bind function object.
   *  [TR1 3.6.3/5 bullet 3]
   */
  template<typename _Arg>
    class _Mu<_Arg, false, true>
    {
    public:
      template<typename _Signature> class result;

      template<typename _CVMu, typename _CVArg, typename _Tuple>
        class result<_CVMu(_CVArg, _Tuple)>
        {
	  // Add a reference, if it hasn't already been done for us.
	  // This allows us to be a little bit sloppy in constructing
	  // the tuple that we pass to result_of<...>.
	  typedef typename _Safe_tuple_element<(is_placeholder<_Arg>::value
						- 1), _Tuple>::type
	    __base_type;

	public:
	  typedef typename add_reference<__base_type>::type type;
	};

      template<typename _Tuple>
        typename result<_Mu(_Arg, _Tuple)>::type
        operator()(const volatile _Arg&, const _Tuple& __tuple) const volatile
        {
	  return ::std::tr1::get<(is_placeholder<_Arg>::value - 1)>(__tuple);
	}
    };

  /**
   *  If the argument is just a value, returns a reference to that
   *  value. The cv-qualifiers on the reference are the same as the
   *  cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
   */
  template<typename _Arg>
    class _Mu<_Arg, false, false>
    {
    public:
      template<typename _Signature> struct result;

      template<typename _CVMu, typename _CVArg, typename _Tuple>
        struct result<_CVMu(_CVArg, _Tuple)>
        {
	  typedef typename add_reference<_CVArg>::type type;
	};

      // Pick up the cv-qualifiers of the argument
      template<typename _CVArg, typename _Tuple>
        _CVArg&
        operator()(_CVArg& __arg, const _Tuple&) const volatile
        { return __arg; }
    };

  /**
   *  Maps member pointers into instances of _Mem_fn but leaves all
   *  other function objects untouched. Used by tr1::bind(). The
   *  primary template handles the non--member-pointer case.
   */
  template<typename _Tp>
    struct _Maybe_wrap_member_pointer
    {
      typedef _Tp type;
      
      static const _Tp&
      __do_wrap(const _Tp& __x)
      { return __x; }
    };

  /**
   *  Maps member pointers into instances of _Mem_fn but leaves all
   *  other function objects untouched. Used by tr1::bind(). This
   *  partial specialization handles the member pointer case.
   */
  template<typename _Tp, typename _Class>
    struct _Maybe_wrap_member_pointer<_Tp _Class::*>
    {
      typedef _Mem_fn<_Tp _Class::*> type;
      
      static type
      __do_wrap(_Tp _Class::* __pm)
      { return type(__pm); }
    };

  /// Type of the function object returned from bind().
  template<typename _Signature>
    struct _Bind;

   template<typename _Functor, typename... _Bound_args>
    class _Bind<_Functor(_Bound_args...)>
    : public _Weak_result_type<_Functor>
    {
      typedef _Bind __self_type;
      typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type 
        _Bound_indexes;

      _Functor _M_f;
      tuple<_Bound_args...> _M_bound_args;

      // Call unqualified
      template<typename... _Args, int... _Indexes>
        typename result_of<
                   _Functor(typename result_of<_Mu<_Bound_args> 
                            (_Bound_args, tuple<_Args...>)>::type...)
                 >::type
        __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }

      // Call as const
      template<typename... _Args, int... _Indexes>
        typename result_of<
                   const _Functor(typename result_of<_Mu<_Bound_args> 
                                    (const _Bound_args, tuple<_Args...>)
                                  >::type...)>::type
        __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }

      // Call as volatile
      template<typename... _Args, int... _Indexes>
        typename result_of<
                   volatile _Functor(typename result_of<_Mu<_Bound_args> 
                                    (volatile _Bound_args, tuple<_Args...>)
                                  >::type...)>::type
        __call(const tuple<_Args...>& __args, 
               _Index_tuple<_Indexes...>) volatile
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }

      // Call as const volatile
      template<typename... _Args, int... _Indexes>
        typename result_of<
                   const volatile _Functor(typename result_of<_Mu<_Bound_args> 
                                    (const volatile _Bound_args, 
                                     tuple<_Args...>)
                                  >::type...)>::type
        __call(const tuple<_Args...>& __args, 
               _Index_tuple<_Indexes...>) const volatile
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }

     public:
      explicit _Bind(_Functor __f, _Bound_args... __bound_args)
        : _M_f(__f), _M_bound_args(__bound_args...) { }

      // Call unqualified
      template<typename... _Args>
        typename result_of<
                   _Functor(typename result_of<_Mu<_Bound_args> 
                            (_Bound_args, tuple<_Args...>)>::type...)
                 >::type
        operator()(_Args&... __args)
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }

      // Call as const
      template<typename... _Args>
        typename result_of<
                   const _Functor(typename result_of<_Mu<_Bound_args> 
                            (const _Bound_args, tuple<_Args...>)>::type...)
                 >::type
        operator()(_Args&... __args) const
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }


      // Call as volatile
      template<typename... _Args>
        typename result_of<
                   volatile _Functor(typename result_of<_Mu<_Bound_args> 
                            (volatile _Bound_args, tuple<_Args...>)>::type...)
                 >::type
        operator()(_Args&... __args) volatile
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }


      // Call as const volatile
      template<typename... _Args>
        typename result_of<
                   const volatile _Functor(typename result_of<_Mu<_Bound_args> 
                            (const volatile _Bound_args, 
                             tuple<_Args...>)>::type...)
                 >::type
        operator()(_Args&... __args) const volatile
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }
    };

  /// Type of the function object returned from bind<R>().
  template<typename _Result, typename _Signature>
    struct _Bind_result;

  template<typename _Result, typename _Functor, typename... _Bound_args>
    class _Bind_result<_Result, _Functor(_Bound_args...)>
    {
      typedef _Bind_result __self_type;
      typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type 
        _Bound_indexes;

      _Functor _M_f;
      tuple<_Bound_args...> _M_bound_args;

      // Call unqualified
      template<typename... _Args, int... _Indexes>
        _Result
        __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }

      // Call as const
      template<typename... _Args, int... _Indexes>
        _Result
        __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }

      // Call as volatile
      template<typename... _Args, int... _Indexes>
        _Result
        __call(const tuple<_Args...>& __args, 
               _Index_tuple<_Indexes...>) volatile
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }

      // Call as const volatile
      template<typename... _Args, int... _Indexes>
        _Result
        __call(const tuple<_Args...>& __args, 
               _Index_tuple<_Indexes...>) const volatile
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }

    public:
      typedef _Result result_type;

      explicit
      _Bind_result(_Functor __f, _Bound_args... __bound_args)
      : _M_f(__f), _M_bound_args(__bound_args...) { }

      // Call unqualified
      template<typename... _Args>
        result_type
        operator()(_Args&... __args)
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }

      // Call as const
      template<typename... _Args>
        result_type
        operator()(_Args&... __args) const
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }

      // Call as volatile
      template<typename... _Args>
        result_type
        operator()(_Args&... __args) volatile
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }

      // Call as const volatile
      template<typename... _Args>
        result_type
        operator()(_Args&... __args) const volatile
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }
    };

  /// Class template _Bind is always a bind expression.
  template<typename _Signature>
    struct is_bind_expression<_Bind<_Signature> >
    { static const bool value = true; };

  template<typename _Signature>
    const bool is_bind_expression<_Bind<_Signature> >::value;

  /// Class template _Bind is always a bind expression.
  template<typename _Signature>
    struct is_bind_expression<const _Bind<_Signature> >
    { static const bool value = true; };

  template<typename _Signature>
    const bool is_bind_expression<const _Bind<_Signature> >::value;

  /// Class template _Bind is always a bind expression.
  template<typename _Signature>
    struct is_bind_expression<volatile _Bind<_Signature> >
    { static const bool value = true; };

  template<typename _Signature>
    const bool is_bind_expression<volatile _Bind<_Signature> >::value;

  /// Class template _Bind is always a bind expression.
  template<typename _Signature>
    struct is_bind_expression<const volatile _Bind<_Signature> >
    { static const bool value = true; };

  template<typename _Signature>
    const bool is_bind_expression<const volatile _Bind<_Signature> >::value;

  /// Class template _Bind_result is always a bind expression.
  template<typename _Result, typename _Signature>
    struct is_bind_expression<_Bind_result<_Result, _Signature> >
    { static const bool value = true; };

  template<typename _Result, typename _Signature>
    const bool is_bind_expression<_Bind_result<_Result, _Signature> >::value;

  /// Class template _Bind_result is always a bind expression.
  template<typename _Result, typename _Signature>
    struct is_bind_expression<const _Bind_result<_Result, _Signature> >
    { static const bool value = true; };

  template<typename _Result, typename _Signature>
    const bool
    is_bind_expression<const _Bind_result<_Result, _Signature> >::value;

  /// Class template _Bind_result is always a bind expression.
  template<typename _Result, typename _Signature>
    struct is_bind_expression<volatile _Bind_result<_Result, _Signature> >
    { static const bool value = true; };

  template<typename _Result, typename _Signature>
    const bool
    is_bind_expression<volatile _Bind_result<_Result, _Signature> >::value;

  /// Class template _Bind_result is always a bind expression.
  template<typename _Result, typename _Signature>
    struct
    is_bind_expression<const volatile _Bind_result<_Result, _Signature> >
    { static const bool value = true; };

  template<typename _Result, typename _Signature>
    const bool
    is_bind_expression<const volatile _Bind_result<_Result,
                                                   _Signature> >::value;

#if __cplusplus >= 201103L
  template<typename _Signature>
    struct is_bind_expression<std::_Bind<_Signature>>
    : true_type { };

  template<typename _Signature>
    struct is_bind_expression<const std::_Bind<_Signature>>
    : true_type { };

  template<typename _Signature>
    struct is_bind_expression<volatile std::_Bind<_Signature>>
    : true_type { };

  template<typename _Signature>
    struct is_bind_expression<const volatile std::_Bind<_Signature>>
    : true_type { };

  template<typename _Result, typename _Signature>
    struct is_bind_expression<std::_Bind_result<_Result, _Signature>>
    : true_type { };

  template<typename _Result, typename _Signature>
    struct is_bind_expression<const std::_Bind_result<_Result, _Signature>>
    : true_type { };

  template<typename _Result, typename _Signature>
    struct is_bind_expression<volatile std::_Bind_result<_Result, _Signature>>
    : true_type { };

  template<typename _Result, typename _Signature>
    struct is_bind_expression<const volatile std::_Bind_result<_Result,
                                                               _Signature>>
    : true_type { };
#endif

  /// bind
  template<typename _Functor, typename... _ArgTypes>
    inline
    _Bind<typename _Maybe_wrap_member_pointer<_Functor>::type(_ArgTypes...)>
    bind(_Functor __f, _ArgTypes... __args)
    {
      typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
      typedef typename __maybe_type::type __functor_type;
      typedef _Bind<__functor_type(_ArgTypes...)> __result_type;
      return __result_type(__maybe_type::__do_wrap(__f), __args...);
    } 

  template<typename _Result, typename _Functor, typename... _ArgTypes>
    inline
    _Bind_result<_Result,
		 typename _Maybe_wrap_member_pointer<_Functor>::type
                            (_ArgTypes...)>
    bind(_Functor __f, _ArgTypes... __args)
    {
      typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
      typedef typename __maybe_type::type __functor_type;
      typedef _Bind_result<_Result, __functor_type(_ArgTypes...)>
	__result_type;
      return __result_type(__maybe_type::__do_wrap(__f), __args...);
    }

  /**
   *  @brief Exception class thrown when class template function's
   *  operator() is called with an empty target.
   *  @ingroup exceptions
   */
  class bad_function_call : public std::exception { };

  /**
   *  The integral constant expression 0 can be converted into a
   *  pointer to this type. It is used by the function template to
   *  accept NULL pointers.
   */
  struct _M_clear_type;

  /**
   *  Trait identifying @a location-invariant types, meaning that the
   *  address of the object (or any of its members) will not escape.
   *  Also implies a trivial copy constructor and assignment operator.
   */
  template<typename _Tp>
    struct __is_location_invariant
    : integral_constant<bool,
                        (is_pointer<_Tp>::value
                         || is_member_pointer<_Tp>::value)>
    {
    };

  class _Undefined_class;

  union _Nocopy_types
  {
    void*       _M_object;
    const void* _M_const_object;
    void (*_M_function_pointer)();
    void (_Undefined_class::*_M_member_pointer)();
  };

  union _Any_data
  {
    void*       _M_access()       { return &_M_pod_data[0]; }
    const void* _M_access() const { return &_M_pod_data[0]; }

    template<typename _Tp>
      _Tp&
      _M_access()
      { return *static_cast<_Tp*>(_M_access()); }

    template<typename _Tp>
      const _Tp&
      _M_access() const
      { return *static_cast<const _Tp*>(_M_access()); }

    _Nocopy_types _M_unused;
    char _M_pod_data[sizeof(_Nocopy_types)];
  };

  enum _Manager_operation
  {
    __get_type_info,
    __get_functor_ptr,
    __clone_functor,
    __destroy_functor
  };

  // Simple type wrapper that helps avoid annoying const problems
  // when casting between void pointers and pointers-to-pointers.
  template<typename _Tp>
    struct _Simple_type_wrapper
    {
      _Simple_type_wrapper(_Tp __value) : __value(__value) { }

      _Tp __value;
    };

  template<typename _Tp>
    struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
    : __is_location_invariant<_Tp>
    {
    };

  // Converts a reference to a function object into a callable
  // function object.
  template<typename _Functor>
    inline _Functor&
    __callable_functor(_Functor& __f)
    { return __f; }

  template<typename _Member, typename _Class>
    inline _Mem_fn<_Member _Class::*>
    __callable_functor(_Member _Class::* &__p)
    { return mem_fn(__p); }

  template<typename _Member, typename _Class>
    inline _Mem_fn<_Member _Class::*>
    __callable_functor(_Member _Class::* const &__p)
    { return mem_fn(__p); }

  template<typename _Signature>
    class function;

  /// Base class of all polymorphic function object wrappers.
  class _Function_base
  {
  public:
    static const std::size_t _M_max_size = sizeof(_Nocopy_types);
    static const std::size_t _M_max_align = __alignof__(_Nocopy_types);

    template<typename _Functor>
      class _Base_manager
      {
      protected:
	static const bool __stored_locally =
        (__is_location_invariant<_Functor>::value
         && sizeof(_Functor) <= _M_max_size
         && __alignof__(_Functor) <= _M_max_align
         && (_M_max_align % __alignof__(_Functor) == 0));
	
	typedef integral_constant<bool, __stored_locally> _Local_storage;

	// Retrieve a pointer to the function object
	static _Functor*
	_M_get_pointer(const _Any_data& __source)
	{
	  const _Functor* __ptr =
	    __stored_locally? std::__addressof(__source._M_access<_Functor>())
	    /* have stored a pointer */ : __source._M_access<_Functor*>();
	  return const_cast<_Functor*>(__ptr);
	}

	// Clone a location-invariant function object that fits within
	// an _Any_data structure.
	static void
	_M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
	{
	  new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
	}

	// Clone a function object that is not location-invariant or
	// that cannot fit into an _Any_data structure.
	static void
	_M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
	{
	  __dest._M_access<_Functor*>() =
	    new _Functor(*__source._M_access<_Functor*>());
	}

	// Destroying a location-invariant object may still require
	// destruction.
	static void
	_M_destroy(_Any_data& __victim, true_type)
	{
	  __victim._M_access<_Functor>().~_Functor();
	}
	
	// Destroying an object located on the heap.
	static void
	_M_destroy(_Any_data& __victim, false_type)
	{
	  delete __victim._M_access<_Functor*>();
	}
	
      public:
	static bool
	_M_manager(_Any_data& __dest, const _Any_data& __source,
		   _Manager_operation __op)
	{
	  switch (__op)
	    {
#ifdef __GXX_RTTI
	    case __get_type_info:
	      __dest._M_access<const type_info*>() = &typeid(_Functor);
	      break;
#endif
	    case __get_functor_ptr:
	      __dest._M_access<_Functor*>() = _M_get_pointer(__source);
	      break;
	      
	    case __clone_functor:
	      _M_clone(__dest, __source, _Local_storage());
	      break;

	    case __destroy_functor:
	      _M_destroy(__dest, _Local_storage());
	      break;
	    }
	  return false;
	}

	static void
	_M_init_functor(_Any_data& __functor, const _Functor& __f)
	{ _M_init_functor(__functor, __f, _Local_storage()); }
	
	template<typename _Signature>
	  static bool
	  _M_not_empty_function(const function<_Signature>& __f)
          { return static_cast<bool>(__f); }

	template<typename _Tp>
	  static bool
	  _M_not_empty_function(const _Tp*& __fp)
	  { return __fp; }

	template<typename _Class, typename _Tp>
	  static bool
	  _M_not_empty_function(_Tp _Class::* const& __mp)
	  { return __mp; }

	template<typename _Tp>
	  static bool
	  _M_not_empty_function(const _Tp&)
	  { return true; }

      private:
	static void
	_M_init_functor(_Any_data& __functor, const _Functor& __f, true_type)
	{ new (__functor._M_access()) _Functor(__f); }

	static void
	_M_init_functor(_Any_data& __functor, const _Functor& __f, false_type)
	{ __functor._M_access<_Functor*>() = new _Functor(__f); }
      };

    template<typename _Functor>
      class _Ref_manager : public _Base_manager<_Functor*>
      {
	typedef _Function_base::_Base_manager<_Functor*> _Base;

    public:
	static bool
	_M_manager(_Any_data& __dest, const _Any_data& __source,
		   _Manager_operation __op)
	{
	  switch (__op)
	    {
#ifdef __GXX_RTTI
	    case __get_type_info:
	      __dest._M_access<const type_info*>() = &typeid(_Functor);
	      break;
#endif
	    case __get_functor_ptr:
	      __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
	      return is_const<_Functor>::value;
	      break;
	      
	    default:
	      _Base::_M_manager(__dest, __source, __op);
	    }
	  return false;
	}

	static void
	_M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
	{
	  _Base::_M_init_functor(__functor, std::__addressof(__f.get()));
	}
      };

    _Function_base() : _M_manager(0) { }
    
    ~_Function_base()
    {
      if (_M_manager)
	_M_manager(_M_functor, _M_functor, __destroy_functor);
    }


    bool _M_empty() const { return !_M_manager; }

    typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
                                  _Manager_operation);

    _Any_data     _M_functor;
    _Manager_type _M_manager;
  };

  template<typename _Signature, typename _Functor>
    class _Function_handler;

  template<typename _Res, typename _Functor, typename... _ArgTypes>
    class _Function_handler<_Res(_ArgTypes...), _Functor>
    : public _Function_base::_Base_manager<_Functor>
    {
      typedef _Function_base::_Base_manager<_Functor> _Base;

    public:
      static _Res
      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
      {
        return (*_Base::_M_get_pointer(__functor))(__args...);
      }
    };

  template<typename _Functor, typename... _ArgTypes>
    class _Function_handler<void(_ArgTypes...), _Functor>
    : public _Function_base::_Base_manager<_Functor>
    {
      typedef _Function_base::_Base_manager<_Functor> _Base;

     public:
      static void
      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
      {
        (*_Base::_M_get_pointer(__functor))(__args...);
      }
    };

  template<typename _Res, typename _Functor, typename... _ArgTypes>
    class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> >
    : public _Function_base::_Ref_manager<_Functor>
    {
      typedef _Function_base::_Ref_manager<_Functor> _Base;

     public:
      static _Res
      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
      {
        return 
          __callable_functor(**_Base::_M_get_pointer(__functor))(__args...);
      }
    };

  template<typename _Functor, typename... _ArgTypes>
    class _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> >
    : public _Function_base::_Ref_manager<_Functor>
    {
      typedef _Function_base::_Ref_manager<_Functor> _Base;

     public:
      static void
      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
      {
        __callable_functor(**_Base::_M_get_pointer(__functor))(__args...);
      }
    };

  template<typename _Class, typename _Member, typename _Res, 
           typename... _ArgTypes>
    class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
    : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
    {
      typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
        _Base;

     public:
      static _Res
      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
      {
        return tr1::
	  mem_fn(_Base::_M_get_pointer(__functor)->__value)(__args...);
      }
    };

  template<typename _Class, typename _Member, typename... _ArgTypes>
    class _Function_handler<void(_ArgTypes...), _Member _Class::*>
    : public _Function_base::_Base_manager<
                 _Simple_type_wrapper< _Member _Class::* > >
    {
      typedef _Member _Class::* _Functor;
      typedef _Simple_type_wrapper<_Functor> _Wrapper;
      typedef _Function_base::_Base_manager<_Wrapper> _Base;

     public:
      static bool
      _M_manager(_Any_data& __dest, const _Any_data& __source,
                 _Manager_operation __op)
      {
        switch (__op)
	  {
#ifdef __GXX_RTTI
	  case __get_type_info:
	    __dest._M_access<const type_info*>() = &typeid(_Functor);
	    break;
#endif	    
	  case __get_functor_ptr:
	    __dest._M_access<_Functor*>() =
	      &_Base::_M_get_pointer(__source)->__value;
	    break;
	    
	  default:
	    _Base::_M_manager(__dest, __source, __op);
	  }
        return false;
      }

      static void
      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
      {
	tr1::mem_fn(_Base::_M_get_pointer(__functor)->__value)(__args...);
      }
    };

  /// class function
  template<typename _Res, typename... _ArgTypes>
    class function<_Res(_ArgTypes...)>
    : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
      private _Function_base
    {
#if __cplusplus < 201103L
      /// This class is used to implement the safe_bool idiom.
      struct _Hidden_type
      {
	_Hidden_type* _M_bool;
      };

      /// This typedef is used to implement the safe_bool idiom.
      typedef _Hidden_type* _Hidden_type::* _Safe_bool;
#endif

      typedef _Res _Signature_type(_ArgTypes...);
      
      struct _Useless { };
      
    public:
      typedef _Res result_type;
      
      // [3.7.2.1] construct/copy/destroy
      
      /**
       *  @brief Default construct creates an empty function call wrapper.
       *  @post @c !(bool)*this
       */
      function() : _Function_base() { }
      
      /**
       *  @brief Default construct creates an empty function call wrapper.
       *  @post @c !(bool)*this
       */
      function(_M_clear_type*) : _Function_base() { }
      
      /**
       *  @brief %Function copy constructor.
       *  @param x A %function object with identical call signature.
       *  @post @c (bool)*this == (bool)x
       *
       *  The newly-created %function contains a copy of the target of @a
       *  x (if it has one).
       */
      function(const function& __x);

      /**
       *  @brief Builds a %function that targets a copy of the incoming
       *  function object.
       *  @param f A %function object that is callable with parameters of
       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
       *  to @c Res.
       *
       *  The newly-created %function object will target a copy of @a
       *  f. If @a f is @c reference_wrapper<F>, then this function
       *  object will contain a reference to the function object @c
       *  f.get(). If @a f is a NULL function pointer or NULL
       *  pointer-to-member, the newly-created object will be empty.
       *
       *  If @a f is a non-NULL function pointer or an object of type @c
       *  reference_wrapper<F>, this function will not throw.
       */
      template<typename _Functor>
        function(_Functor __f,
                 typename __gnu_cxx::__enable_if<
                           !is_integral<_Functor>::value, _Useless>::__type
                   = _Useless());

      /**
       *  @brief %Function assignment operator.
       *  @param x A %function with identical call signature.
       *  @post @c (bool)*this == (bool)x
       *  @returns @c *this
       *
       *  The target of @a x is copied to @c *this. If @a x has no
       *  target, then @c *this will be empty.
       *
       *  If @a x targets a function pointer or a reference to a function
       *  object, then this operation will not throw an %exception.
       */
      function&
      operator=(const function& __x)
      {
        function(__x).swap(*this);
        return *this;
      }

      /**
       *  @brief %Function assignment to zero.
       *  @post @c !(bool)*this
       *  @returns @c *this
       *
       *  The target of @c *this is deallocated, leaving it empty.
       */
      function&
      operator=(_M_clear_type*)
      {
        if (_M_manager)
	  {
	    _M_manager(_M_functor, _M_functor, __destroy_functor);
	    _M_manager = 0;
	    _M_invoker = 0;
	  }
        return *this;
      }

      /**
       *  @brief %Function assignment to a new target.
       *  @param f A %function object that is callable with parameters of
       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
       *  to @c Res.
       *  @return @c *this
       *
       *  This  %function object wrapper will target a copy of @a
       *  f. If @a f is @c reference_wrapper<F>, then this function
       *  object will contain a reference to the function object @c
       *  f.get(). If @a f is a NULL function pointer or NULL
       *  pointer-to-member, @c this object will be empty.
       *
       *  If @a f is a non-NULL function pointer or an object of type @c
       *  reference_wrapper<F>, this function will not throw.
       */
      template<typename _Functor>
        typename __gnu_cxx::__enable_if<!is_integral<_Functor>::value,
	                                function&>::__type
	operator=(_Functor __f)
	{
	  function(__f).swap(*this);
	  return *this;
	}

      // [3.7.2.2] function modifiers
      
      /**
       *  @brief Swap the targets of two %function objects.
       *  @param f A %function with identical call signature.
       *
       *  Swap the targets of @c this function object and @a f. This
       *  function will not throw an %exception.
       */
      void swap(function& __x)
      {
	std::swap(_M_functor, __x._M_functor);
	std::swap(_M_manager, __x._M_manager);
	std::swap(_M_invoker, __x._M_invoker);
      }

      // [3.7.2.3] function capacity

      /**
       *  @brief Determine if the %function wrapper has a target.
       *
       *  @return @c true when this %function object contains a target,
       *  or @c false when it is empty.
       *
       *  This function will not throw an %exception.
       */
#if __cplusplus >= 201103L
      explicit operator bool() const
      { return !_M_empty(); }
#else
      operator _Safe_bool() const
      {
        if (_M_empty())
	  return 0;
	else
	  return &_Hidden_type::_M_bool;
      }
#endif

      // [3.7.2.4] function invocation

      /**
       *  @brief Invokes the function targeted by @c *this.
       *  @returns the result of the target.
       *  @throws bad_function_call when @c !(bool)*this
       *
       *  The function call operator invokes the target function object
       *  stored by @c this.
       */
      _Res operator()(_ArgTypes... __args) const;

#ifdef __GXX_RTTI
      // [3.7.2.5] function target access
      /**
       *  @brief Determine the type of the target of this function object
       *  wrapper.
       *
       *  @returns the type identifier of the target function object, or
       *  @c typeid(void) if @c !(bool)*this.
       *
       *  This function will not throw an %exception.
       */
      const type_info& target_type() const;
      
      /**
       *  @brief Access the stored target function object.
       *
       *  @return Returns a pointer to the stored target function object,
       *  if @c typeid(Functor).equals(target_type()); otherwise, a NULL
       *  pointer.
       *
       * This function will not throw an %exception.
       */
      template<typename _Functor>       _Functor* target();
      
      /// @overload
      template<typename _Functor> const _Functor* target() const;
#endif

    private:
      // [3.7.2.6] undefined operators
      template<typename _Function>
	void operator==(const function<_Function>&) const;
      template<typename _Function>
	void operator!=(const function<_Function>&) const;

      typedef _Res (*_Invoker_type)(const _Any_data&, _ArgTypes...);
      _Invoker_type _M_invoker;
  };

  template<typename _Res, typename... _ArgTypes>
    function<_Res(_ArgTypes...)>::
    function(const function& __x)
    : _Function_base()
    {
      if (static_cast<bool>(__x))
	{
	  __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
	  _M_invoker = __x._M_invoker;
	  _M_manager = __x._M_manager;
	}
    }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor>
      function<_Res(_ArgTypes...)>::
      function(_Functor __f,
	       typename __gnu_cxx::__enable_if<
                       !is_integral<_Functor>::value, _Useless>::__type)
      : _Function_base()
      {
	typedef _Function_handler<_Signature_type, _Functor> _My_handler;

	if (_My_handler::_M_not_empty_function(__f))
	  {
	    _My_handler::_M_init_functor(_M_functor, __f);
	    _M_invoker = &_My_handler::_M_invoke;
	    _M_manager = &_My_handler::_M_manager;
	  }
      }

  template<typename _Res, typename... _ArgTypes>
    _Res
    function<_Res(_ArgTypes...)>::
    operator()(_ArgTypes... __args) const
    {
      if (_M_empty())
	_GLIBCXX_THROW_OR_ABORT(bad_function_call());
      return _M_invoker(_M_functor, __args...);
    }

#ifdef __GXX_RTTI
  template<typename _Res, typename... _ArgTypes>
    const type_info&
    function<_Res(_ArgTypes...)>::
    target_type() const
    {
      if (_M_manager)
        {
          _Any_data __typeinfo_result;
          _M_manager(__typeinfo_result, _M_functor, __get_type_info);
          return *__typeinfo_result._M_access<const type_info*>();
        }
      else
	return typeid(void);
    }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor>
      _Functor*
      function<_Res(_ArgTypes...)>::
      target()
      {
	if (typeid(_Functor) == target_type() && _M_manager)
	  {
	    _Any_data __ptr;
	    if (_M_manager(__ptr, _M_functor, __get_functor_ptr)
		&& !is_const<_Functor>::value)
	      return 0;
	    else
	      return __ptr._M_access<_Functor*>();
	  }
	else
	  return 0;
      }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor>
      const _Functor*
      function<_Res(_ArgTypes...)>::
      target() const
      {
	if (typeid(_Functor) == target_type() && _M_manager)
	  {
	    _Any_data __ptr;
	    _M_manager(__ptr, _M_functor, __get_functor_ptr);
	    return __ptr._M_access<const _Functor*>();
	  }
	else
	  return 0;
      }
#endif

  // [3.7.2.7] null pointer comparisons

  /**
   *  @brief Compares a polymorphic function object wrapper against 0
   *  (the NULL pointer).
   *  @returns @c true if the wrapper has no target, @c false otherwise
   *
   *  This function will not throw an %exception.
   */
  template<typename _Signature>
    inline bool
    operator==(const function<_Signature>& __f, _M_clear_type*)
    { return !static_cast<bool>(__f); }

  /// @overload
  template<typename _Signature>
    inline bool
    operator==(_M_clear_type*, const function<_Signature>& __f)
    { return !static_cast<bool>(__f); }

  /**
   *  @brief Compares a polymorphic function object wrapper against 0
   *  (the NULL pointer).
   *  @returns @c false if the wrapper has no target, @c true otherwise
   *
   *  This function will not throw an %exception.
   */
  template<typename _Signature>
    inline bool
    operator!=(const function<_Signature>& __f, _M_clear_type*)
    { return static_cast<bool>(__f); }

  /// @overload
  template<typename _Signature>
    inline bool
    operator!=(_M_clear_type*, const function<_Signature>& __f)
    { return static_cast<bool>(__f); }

  // [3.7.2.8] specialized algorithms

  /**
   *  @brief Swap the targets of two polymorphic function object wrappers.
   *
   *  This function will not throw an %exception.
   */
  template<typename _Signature>
    inline void
    swap(function<_Signature>& __x, function<_Signature>& __y)
    { __x.swap(__y); }

_GLIBCXX_END_NAMESPACE_VERSION
}

#if __cplusplus >= 201103L
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  template<typename> struct is_placeholder;

  template<int _Num>
    struct is_placeholder<tr1::_Placeholder<_Num>>
    : integral_constant<int, _Num>
    { };

  template<int _Num>
    struct is_placeholder<const tr1::_Placeholder<_Num>>
    : integral_constant<int, _Num>
    { };

  template<typename> struct is_bind_expression;

  template<typename _Signature>
    struct is_bind_expression<tr1::_Bind<_Signature>>
    : true_type { };

  template<typename _Signature>
    struct is_bind_expression<const tr1::_Bind<_Signature>>
    : true_type { };

  template<typename _Signature>
    struct is_bind_expression<volatile tr1::_Bind<_Signature>>
    : true_type { };

  template<typename _Signature>
    struct is_bind_expression<const volatile tr1::_Bind<_Signature>>
    : true_type { };

  template<typename _Result, typename _Signature>
    struct is_bind_expression<tr1::_Bind_result<_Result, _Signature>>
    : true_type { };

  template<typename _Result, typename _Signature>
    struct is_bind_expression<const tr1::_Bind_result<_Result, _Signature>>
    : true_type { };

  template<typename _Result, typename _Signature>
    struct is_bind_expression<volatile tr1::_Bind_result<_Result, _Signature>>
    : true_type { };

  template<typename _Result, typename _Signature>
    struct is_bind_expression<const volatile tr1::_Bind_result<_Result,
                                                               _Signature>>
    : true_type { };

_GLIBCXX_END_NAMESPACE_VERSION
#endif
}

#endif // _GLIBCXX_TR1_FUNCTIONAL

Filemanager

Name Type Size Permission Actions
array File 6.8 KB 0644
bessel_function.tcc File 21.6 KB 0644
beta_function.tcc File 5.47 KB 0644
ccomplex File 1.23 KB 0644
cctype File 1.38 KB 0644
cfenv File 1.96 KB 0644
cfloat File 1.35 KB 0644
cinttypes File 2.2 KB 0644
climits File 1.42 KB 0644
cmath File 36.55 KB 0644
complex File 12.04 KB 0644
complex.h File 1.23 KB 0644
cstdarg File 1.22 KB 0644
cstdbool File 1.31 KB 0644
cstdint File 2.56 KB 0644
cstdio File 1.44 KB 0644
cstdlib File 1.74 KB 0644
ctgmath File 1.22 KB 0644
ctime File 1.21 KB 0644
ctype.h File 1.18 KB 0644
cwchar File 1.67 KB 0644
cwctype File 1.42 KB 0644
ell_integral.tcc File 26.85 KB 0644
exp_integral.tcc File 15.41 KB 0644
fenv.h File 1.18 KB 0644
float.h File 1.18 KB 0644
functional File 69.15 KB 0644
functional_hash.h File 5.7 KB 0644
gamma.tcc File 13.97 KB 0644
hashtable.h File 40.56 KB 0644
hashtable_policy.h File 24.64 KB 0644
hypergeometric.tcc File 27.07 KB 0644
inttypes.h File 1.24 KB 0644
legendre_function.tcc File 10.32 KB 0644
limits.h File 1.19 KB 0644
math.h File 4.45 KB 0644
memory File 1.75 KB 0644
modified_bessel_func.tcc File 15.35 KB 0644
poly_hermite.tcc File 3.61 KB 0644
poly_laguerre.tcc File 11.08 KB 0644
random File 1.55 KB 0644
random.h File 71.48 KB 0644
random.tcc File 52.73 KB 0644
regex File 90.77 KB 0644
riemann_zeta.tcc File 13.34 KB 0644
shared_ptr.h File 31.91 KB 0644
special_function_util.h File 4.71 KB 0644
stdarg.h File 1.19 KB 0644
stdbool.h File 1.19 KB 0644
stdint.h File 1.19 KB 0644
stdio.h File 1.18 KB 0644
stdlib.h File 1.45 KB 0644
tgmath.h File 1.23 KB 0644
tuple File 11.83 KB 0644
type_traits File 18.57 KB 0644
unordered_map File 1.54 KB 0644
unordered_map.h File 9.98 KB 0644
unordered_set File 1.54 KB 0644
unordered_set.h File 9.32 KB 0644
utility File 3.15 KB 0644
wchar.h File 1.22 KB 0644
wctype.h File 1.23 KB 0644