[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@18.223.203.6: ~ $
// Internal policy header for TR1 unordered_set and unordered_map -*- C++ -*-

// Copyright (C) 2010-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file tr1/hashtable_policy.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. 
 *  @headername{tr1/unordered_map, tr1/unordered_set}
 */

namespace std _GLIBCXX_VISIBILITY(default)
{ 
namespace tr1
{
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  // Helper function: return distance(first, last) for forward
  // iterators, or 0 for input iterators.
  template<class _Iterator>
    inline typename std::iterator_traits<_Iterator>::difference_type
    __distance_fw(_Iterator __first, _Iterator __last,
		  std::input_iterator_tag)
    { return 0; }

  template<class _Iterator>
    inline typename std::iterator_traits<_Iterator>::difference_type
    __distance_fw(_Iterator __first, _Iterator __last,
		  std::forward_iterator_tag)
    { return std::distance(__first, __last); }

  template<class _Iterator>
    inline typename std::iterator_traits<_Iterator>::difference_type
    __distance_fw(_Iterator __first, _Iterator __last)
    {
      typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
      return __distance_fw(__first, __last, _Tag());
    }

  // Auxiliary types used for all instantiations of _Hashtable: nodes
  // and iterators.
  
  // Nodes, used to wrap elements stored in the hash table.  A policy
  // template parameter of class template _Hashtable controls whether
  // nodes also store a hash code. In some cases (e.g. strings) this
  // may be a performance win.
  template<typename _Value, bool __cache_hash_code>
    struct _Hash_node;

  template<typename _Value>
    struct _Hash_node<_Value, true>
    {
      _Value       _M_v;
      std::size_t  _M_hash_code;
      _Hash_node*  _M_next;
    };

  template<typename _Value>
    struct _Hash_node<_Value, false>
    {
      _Value       _M_v;
      _Hash_node*  _M_next;
    };

  // Local iterators, used to iterate within a bucket but not between
  // buckets.
  template<typename _Value, bool __cache>
    struct _Node_iterator_base
    {
      _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
      : _M_cur(__p) { }
      
      void
      _M_incr()
      { _M_cur = _M_cur->_M_next; }

      _Hash_node<_Value, __cache>*  _M_cur;
    };

  template<typename _Value, bool __cache>
    inline bool
    operator==(const _Node_iterator_base<_Value, __cache>& __x,
	       const _Node_iterator_base<_Value, __cache>& __y)
    { return __x._M_cur == __y._M_cur; }

  template<typename _Value, bool __cache>
    inline bool
    operator!=(const _Node_iterator_base<_Value, __cache>& __x,
	       const _Node_iterator_base<_Value, __cache>& __y)
    { return __x._M_cur != __y._M_cur; }

  template<typename _Value, bool __constant_iterators, bool __cache>
    struct _Node_iterator
    : public _Node_iterator_base<_Value, __cache>
    {
      typedef _Value                                   value_type;
      typedef typename
      __gnu_cxx::__conditional_type<__constant_iterators,
				    const _Value*, _Value*>::__type
                                                       pointer;
      typedef typename
      __gnu_cxx::__conditional_type<__constant_iterators,
				    const _Value&, _Value&>::__type
                                                       reference;
      typedef std::ptrdiff_t                           difference_type;
      typedef std::forward_iterator_tag                iterator_category;

      _Node_iterator()
      : _Node_iterator_base<_Value, __cache>(0) { }

      explicit
      _Node_iterator(_Hash_node<_Value, __cache>* __p)
      : _Node_iterator_base<_Value, __cache>(__p) { }

      reference
      operator*() const
      { return this->_M_cur->_M_v; }
  
      pointer
      operator->() const
      { return std::__addressof(this->_M_cur->_M_v); }

      _Node_iterator&
      operator++()
      { 
	this->_M_incr();
	return *this; 
      }
  
      _Node_iterator
      operator++(int)
      { 
	_Node_iterator __tmp(*this);
	this->_M_incr();
	return __tmp;
      }
    };

  template<typename _Value, bool __constant_iterators, bool __cache>
    struct _Node_const_iterator
    : public _Node_iterator_base<_Value, __cache>
    {
      typedef _Value                                   value_type;
      typedef const _Value*                            pointer;
      typedef const _Value&                            reference;
      typedef std::ptrdiff_t                           difference_type;
      typedef std::forward_iterator_tag                iterator_category;

      _Node_const_iterator()
      : _Node_iterator_base<_Value, __cache>(0) { }

      explicit
      _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
      : _Node_iterator_base<_Value, __cache>(__p) { }

      _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
			   __cache>& __x)
      : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }

      reference
      operator*() const
      { return this->_M_cur->_M_v; }
  
      pointer
      operator->() const
      { return std::__addressof(this->_M_cur->_M_v); }

      _Node_const_iterator&
      operator++()
      { 
	this->_M_incr();
	return *this; 
      }
  
      _Node_const_iterator
      operator++(int)
      { 
	_Node_const_iterator __tmp(*this);
	this->_M_incr();
	return __tmp;
      }
    };

  template<typename _Value, bool __cache>
    struct _Hashtable_iterator_base
    {
      _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
			       _Hash_node<_Value, __cache>** __bucket)
      : _M_cur_node(__node), _M_cur_bucket(__bucket) { }

      void
      _M_incr()
      {
	_M_cur_node = _M_cur_node->_M_next;
	if (!_M_cur_node)
	  _M_incr_bucket();
      }

      void
      _M_incr_bucket();

      _Hash_node<_Value, __cache>*   _M_cur_node;
      _Hash_node<_Value, __cache>**  _M_cur_bucket;
    };

  // Global iterators, used for arbitrary iteration within a hash
  // table.  Larger and more expensive than local iterators.
  template<typename _Value, bool __cache>
    void
    _Hashtable_iterator_base<_Value, __cache>::
    _M_incr_bucket()
    {
      ++_M_cur_bucket;

      // This loop requires the bucket array to have a non-null sentinel.
      while (!*_M_cur_bucket)
	++_M_cur_bucket;
      _M_cur_node = *_M_cur_bucket;
    }

  template<typename _Value, bool __cache>
    inline bool
    operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
	       const _Hashtable_iterator_base<_Value, __cache>& __y)
    { return __x._M_cur_node == __y._M_cur_node; }

  template<typename _Value, bool __cache>
    inline bool
    operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
	       const _Hashtable_iterator_base<_Value, __cache>& __y)
    { return __x._M_cur_node != __y._M_cur_node; }

  template<typename _Value, bool __constant_iterators, bool __cache>
    struct _Hashtable_iterator
    : public _Hashtable_iterator_base<_Value, __cache>
    {
      typedef _Value                                   value_type;
      typedef typename
      __gnu_cxx::__conditional_type<__constant_iterators,
				    const _Value*, _Value*>::__type
                                                       pointer;
      typedef typename
      __gnu_cxx::__conditional_type<__constant_iterators,
				    const _Value&, _Value&>::__type
                                                       reference;
      typedef std::ptrdiff_t                           difference_type;
      typedef std::forward_iterator_tag                iterator_category;

      _Hashtable_iterator()
      : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }

      _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
			  _Hash_node<_Value, __cache>** __b)
      : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }

      explicit
      _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
      : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }

      reference
      operator*() const
      { return this->_M_cur_node->_M_v; }
  
      pointer
      operator->() const
      { return std::__addressof(this->_M_cur_node->_M_v); }

      _Hashtable_iterator&
      operator++()
      { 
	this->_M_incr();
	return *this;
      }
  
      _Hashtable_iterator
      operator++(int)
      { 
	_Hashtable_iterator __tmp(*this);
	this->_M_incr();
	return __tmp;
      }
    };

  template<typename _Value, bool __constant_iterators, bool __cache>
    struct _Hashtable_const_iterator
    : public _Hashtable_iterator_base<_Value, __cache>
    {
      typedef _Value                                   value_type;
      typedef const _Value*                            pointer;
      typedef const _Value&                            reference;
      typedef std::ptrdiff_t                           difference_type;
      typedef std::forward_iterator_tag                iterator_category;

      _Hashtable_const_iterator()
      : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }

      _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
				_Hash_node<_Value, __cache>** __b)
      : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }

      explicit
      _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
      : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }

      _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
				__constant_iterators, __cache>& __x)
      : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
						  __x._M_cur_bucket) { }

      reference
      operator*() const
      { return this->_M_cur_node->_M_v; }
  
      pointer
      operator->() const
      { return std::__addressof(this->_M_cur_node->_M_v); }

      _Hashtable_const_iterator&
      operator++()
      { 
	this->_M_incr();
	return *this;
      }
  
      _Hashtable_const_iterator
      operator++(int)
      { 
	_Hashtable_const_iterator __tmp(*this);
	this->_M_incr();
	return __tmp;
      }
    };


  // Many of class template _Hashtable's template parameters are policy
  // classes.  These are defaults for the policies.

  // Default range hashing function: use division to fold a large number
  // into the range [0, N).
  struct _Mod_range_hashing
  {
    typedef std::size_t first_argument_type;
    typedef std::size_t second_argument_type;
    typedef std::size_t result_type;

    result_type
    operator()(first_argument_type __num, second_argument_type __den) const
    { return __num % __den; }
  };

  // Default ranged hash function H.  In principle it should be a
  // function object composed from objects of type H1 and H2 such that
  // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
  // h1 and h2.  So instead we'll just use a tag to tell class template
  // hashtable to do that composition.
  struct _Default_ranged_hash { };

  // Default value for rehash policy.  Bucket size is (usually) the
  // smallest prime that keeps the load factor small enough.
  struct _Prime_rehash_policy
  {
    _Prime_rehash_policy(float __z = 1.0)
    : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }

    float
    max_load_factor() const
    { return _M_max_load_factor; }      

    // Return a bucket size no smaller than n.
    std::size_t
    _M_next_bkt(std::size_t __n) const;
    
    // Return a bucket count appropriate for n elements
    std::size_t
    _M_bkt_for_elements(std::size_t __n) const;
    
    // __n_bkt is current bucket count, __n_elt is current element count,
    // and __n_ins is number of elements to be inserted.  Do we need to
    // increase bucket count?  If so, return make_pair(true, n), where n
    // is the new bucket count.  If not, return make_pair(false, 0).
    std::pair<bool, std::size_t>
    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
		   std::size_t __n_ins) const;

    enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };

    float                _M_max_load_factor;
    float                _M_growth_factor;
    mutable std::size_t  _M_next_resize;
  };

  extern const unsigned long __prime_list[];

  // XXX This is a hack.  There's no good reason for any of
  // _Prime_rehash_policy's member functions to be inline.  

  // Return a prime no smaller than n.
  inline std::size_t
  _Prime_rehash_policy::
  _M_next_bkt(std::size_t __n) const
  {
    const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
						+ _S_n_primes, __n);
    _M_next_resize = 
      static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
    return *__p;
  }

  // Return the smallest prime p such that alpha p >= n, where alpha
  // is the load factor.
  inline std::size_t
  _Prime_rehash_policy::
  _M_bkt_for_elements(std::size_t __n) const
  {
    const float __min_bkts = __n / _M_max_load_factor;
    const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
						+ _S_n_primes, __min_bkts);
    _M_next_resize =
      static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
    return *__p;
  }

  // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
  // If p > __n_bkt, return make_pair(true, p); otherwise return
  // make_pair(false, 0).  In principle this isn't very different from 
  // _M_bkt_for_elements.

  // The only tricky part is that we're caching the element count at
  // which we need to rehash, so we don't have to do a floating-point
  // multiply for every insertion.

  inline std::pair<bool, std::size_t>
  _Prime_rehash_policy::
  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
		 std::size_t __n_ins) const
  {
    if (__n_elt + __n_ins > _M_next_resize)
      {
	float __min_bkts = ((float(__n_ins) + float(__n_elt))
			    / _M_max_load_factor);
	if (__min_bkts > __n_bkt)
	  {
	    __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
	    const unsigned long* __p =
	      std::lower_bound(__prime_list, __prime_list + _S_n_primes,
			       __min_bkts);
	    _M_next_resize = static_cast<std::size_t>
	      (__builtin_ceil(*__p * _M_max_load_factor));
	    return std::make_pair(true, *__p);
	  }
	else 
	  {
	    _M_next_resize = static_cast<std::size_t>
	      (__builtin_ceil(__n_bkt * _M_max_load_factor));
	    return std::make_pair(false, 0);
	  }
      }
    else
      return std::make_pair(false, 0);
  }

  // Base classes for std::tr1::_Hashtable.  We define these base
  // classes because in some cases we want to do different things
  // depending on the value of a policy class.  In some cases the
  // policy class affects which member functions and nested typedefs
  // are defined; we handle that by specializing base class templates.
  // Several of the base class templates need to access other members
  // of class template _Hashtable, so we use the "curiously recurring
  // template pattern" for them.

  // class template _Map_base.  If the hashtable has a value type of the
  // form pair<T1, T2> and a key extraction policy that returns the
  // first part of the pair, the hashtable gets a mapped_type typedef.
  // If it satisfies those criteria and also has unique keys, then it
  // also gets an operator[].  
  template<typename _Key, typename _Value, typename _Ex, bool __unique,
	   typename _Hashtable>
    struct _Map_base { };
	  
  template<typename _Key, typename _Pair, typename _Hashtable>
    struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
    {
      typedef typename _Pair::second_type mapped_type;
    };

  template<typename _Key, typename _Pair, typename _Hashtable>
    struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
    {
      typedef typename _Pair::second_type mapped_type;
      
      mapped_type&
      operator[](const _Key& __k);
    };

  template<typename _Key, typename _Pair, typename _Hashtable>
    typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
		       true, _Hashtable>::mapped_type&
    _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
    operator[](const _Key& __k)
    {
      _Hashtable* __h = static_cast<_Hashtable*>(this);
      typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
      std::size_t __n = __h->_M_bucket_index(__k, __code,
					     __h->_M_bucket_count);

      typename _Hashtable::_Node* __p =
	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
      if (!__p)
	return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
				     __n, __code)->second;
      return (__p->_M_v).second;
    }

  // class template _Rehash_base.  Give hashtable the max_load_factor
  // functions iff the rehash policy is _Prime_rehash_policy.
  template<typename _RehashPolicy, typename _Hashtable>
    struct _Rehash_base { };

  template<typename _Hashtable>
    struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
    {
      float
      max_load_factor() const
      {
	const _Hashtable* __this = static_cast<const _Hashtable*>(this);
	return __this->__rehash_policy().max_load_factor();
      }

      void
      max_load_factor(float __z)
      {
	_Hashtable* __this = static_cast<_Hashtable*>(this);
	__this->__rehash_policy(_Prime_rehash_policy(__z));
      }
    };

  // Class template _Hash_code_base.  Encapsulates two policy issues that
  // aren't quite orthogonal.
  //   (1) the difference between using a ranged hash function and using
  //       the combination of a hash function and a range-hashing function.
  //       In the former case we don't have such things as hash codes, so
  //       we have a dummy type as placeholder.
  //   (2) Whether or not we cache hash codes.  Caching hash codes is
  //       meaningless if we have a ranged hash function.
  // We also put the key extraction and equality comparison function 
  // objects here, for convenience.
  
  // Primary template: unused except as a hook for specializations.  
  template<typename _Key, typename _Value,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   bool __cache_hash_code>
    struct _Hash_code_base;

  // Specialization: ranged hash function, no caching hash codes.  H1
  // and H2 are provided but ignored.  We define a dummy hash code type.
  template<typename _Key, typename _Value,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash>
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
			   _Hash, false>
    {
    protected:
      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
		      const _H1&, const _H2&, const _Hash& __h)
      : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }

      typedef void* _Hash_code_type;
  
      _Hash_code_type
      _M_hash_code(const _Key& __key) const
      { return 0; }
  
      std::size_t
      _M_bucket_index(const _Key& __k, _Hash_code_type,
		      std::size_t __n) const
      { return _M_ranged_hash(__k, __n); }

      std::size_t
      _M_bucket_index(const _Hash_node<_Value, false>* __p,
		      std::size_t __n) const
      { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
  
      bool
      _M_compare(const _Key& __k, _Hash_code_type,
		 _Hash_node<_Value, false>* __n) const
      { return _M_eq(__k, _M_extract(__n->_M_v)); }

      void
      _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
      { }

      void
      _M_copy_code(_Hash_node<_Value, false>*,
		   const _Hash_node<_Value, false>*) const
      { }
      
      void
      _M_swap(_Hash_code_base& __x)
      {
	std::swap(_M_extract, __x._M_extract);
	std::swap(_M_eq, __x._M_eq);
	std::swap(_M_ranged_hash, __x._M_ranged_hash);
      }

    protected:
      _ExtractKey  _M_extract;
      _Equal       _M_eq;
      _Hash        _M_ranged_hash;
    };


  // No specialization for ranged hash function while caching hash codes.
  // That combination is meaningless, and trying to do it is an error.
  
  
  // Specialization: ranged hash function, cache hash codes.  This
  // combination is meaningless, so we provide only a declaration
  // and no definition.  
  template<typename _Key, typename _Value,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash>
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
			   _Hash, true>;

  // Specialization: hash function and range-hashing function, no
  // caching of hash codes.  H is provided but ignored.  Provides
  // typedef and accessor required by TR1.  
  template<typename _Key, typename _Value,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2>
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
			   _Default_ranged_hash, false>
    {
      typedef _H1 hasher;

      hasher
      hash_function() const
      { return _M_h1; }

    protected:
      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
		      const _H1& __h1, const _H2& __h2,
		      const _Default_ranged_hash&)
      : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }

      typedef std::size_t _Hash_code_type;

      _Hash_code_type
      _M_hash_code(const _Key& __k) const
      { return _M_h1(__k); }
      
      std::size_t
      _M_bucket_index(const _Key&, _Hash_code_type __c,
		      std::size_t __n) const
      { return _M_h2(__c, __n); }

      std::size_t
      _M_bucket_index(const _Hash_node<_Value, false>* __p,
		      std::size_t __n) const
      { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }

      bool
      _M_compare(const _Key& __k, _Hash_code_type,
		 _Hash_node<_Value, false>* __n) const
      { return _M_eq(__k, _M_extract(__n->_M_v)); }

      void
      _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
      { }

      void
      _M_copy_code(_Hash_node<_Value, false>*,
		   const _Hash_node<_Value, false>*) const
      { }

      void
      _M_swap(_Hash_code_base& __x)
      {
	std::swap(_M_extract, __x._M_extract);
	std::swap(_M_eq, __x._M_eq);
	std::swap(_M_h1, __x._M_h1);
	std::swap(_M_h2, __x._M_h2);
      }

    protected:
      _ExtractKey  _M_extract;
      _Equal       _M_eq;
      _H1          _M_h1;
      _H2          _M_h2;
    };

  // Specialization: hash function and range-hashing function, 
  // caching hash codes.  H is provided but ignored.  Provides
  // typedef and accessor required by TR1.
  template<typename _Key, typename _Value,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2>
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
			   _Default_ranged_hash, true>
    {
      typedef _H1 hasher;
      
      hasher
      hash_function() const
      { return _M_h1; }

    protected:
      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
		      const _H1& __h1, const _H2& __h2,
		      const _Default_ranged_hash&)
      : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }

      typedef std::size_t _Hash_code_type;
  
      _Hash_code_type
      _M_hash_code(const _Key& __k) const
      { return _M_h1(__k); }
  
      std::size_t
      _M_bucket_index(const _Key&, _Hash_code_type __c,
		      std::size_t __n) const
      { return _M_h2(__c, __n); }

      std::size_t
      _M_bucket_index(const _Hash_node<_Value, true>* __p,
		      std::size_t __n) const
      { return _M_h2(__p->_M_hash_code, __n); }

      bool
      _M_compare(const _Key& __k, _Hash_code_type __c,
		 _Hash_node<_Value, true>* __n) const
      { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }

      void
      _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
      { __n->_M_hash_code = __c; }

      void
      _M_copy_code(_Hash_node<_Value, true>* __to,
		   const _Hash_node<_Value, true>* __from) const
      { __to->_M_hash_code = __from->_M_hash_code; }

      void
      _M_swap(_Hash_code_base& __x)
      {
	std::swap(_M_extract, __x._M_extract);
	std::swap(_M_eq, __x._M_eq);
	std::swap(_M_h1, __x._M_h1);
	std::swap(_M_h2, __x._M_h2);
      }
      
    protected:
      _ExtractKey  _M_extract;
      _Equal       _M_eq;
      _H1          _M_h1;
      _H2          _M_h2;
    };
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
}
}

Filemanager

Name Type Size Permission Actions
array File 6.8 KB 0644
bessel_function.tcc File 21.6 KB 0644
beta_function.tcc File 5.47 KB 0644
ccomplex File 1.23 KB 0644
cctype File 1.38 KB 0644
cfenv File 1.96 KB 0644
cfloat File 1.35 KB 0644
cinttypes File 2.2 KB 0644
climits File 1.42 KB 0644
cmath File 36.55 KB 0644
complex File 12.04 KB 0644
complex.h File 1.23 KB 0644
cstdarg File 1.22 KB 0644
cstdbool File 1.31 KB 0644
cstdint File 2.56 KB 0644
cstdio File 1.44 KB 0644
cstdlib File 1.74 KB 0644
ctgmath File 1.22 KB 0644
ctime File 1.21 KB 0644
ctype.h File 1.18 KB 0644
cwchar File 1.67 KB 0644
cwctype File 1.42 KB 0644
ell_integral.tcc File 26.85 KB 0644
exp_integral.tcc File 15.41 KB 0644
fenv.h File 1.18 KB 0644
float.h File 1.18 KB 0644
functional File 69.15 KB 0644
functional_hash.h File 5.7 KB 0644
gamma.tcc File 13.97 KB 0644
hashtable.h File 40.56 KB 0644
hashtable_policy.h File 24.64 KB 0644
hypergeometric.tcc File 27.07 KB 0644
inttypes.h File 1.24 KB 0644
legendre_function.tcc File 10.32 KB 0644
limits.h File 1.19 KB 0644
math.h File 4.45 KB 0644
memory File 1.75 KB 0644
modified_bessel_func.tcc File 15.35 KB 0644
poly_hermite.tcc File 3.61 KB 0644
poly_laguerre.tcc File 11.08 KB 0644
random File 1.55 KB 0644
random.h File 71.48 KB 0644
random.tcc File 52.73 KB 0644
regex File 90.77 KB 0644
riemann_zeta.tcc File 13.34 KB 0644
shared_ptr.h File 31.91 KB 0644
special_function_util.h File 4.71 KB 0644
stdarg.h File 1.19 KB 0644
stdbool.h File 1.19 KB 0644
stdint.h File 1.19 KB 0644
stdio.h File 1.18 KB 0644
stdlib.h File 1.45 KB 0644
tgmath.h File 1.23 KB 0644
tuple File 11.83 KB 0644
type_traits File 18.57 KB 0644
unordered_map File 1.54 KB 0644
unordered_map.h File 9.98 KB 0644
unordered_set File 1.54 KB 0644
unordered_set.h File 9.32 KB 0644
utility File 3.15 KB 0644
wchar.h File 1.22 KB 0644
wctype.h File 1.23 KB 0644