[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@3.133.149.244: ~ $
// Special functions -*- C++ -*-

// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file tr1/legendre_function.tcc
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{tr1/cmath}
 */

//
// ISO C++ 14882 TR1: 5.2  Special functions
//

// Written by Edward Smith-Rowland based on:
//   (1) Handbook of Mathematical Functions,
//       ed. Milton Abramowitz and Irene A. Stegun,
//       Dover Publications,
//       Section 8, pp. 331-341
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
//       2nd ed, pp. 252-254

#ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
#define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1

#include "special_function_util.h"

namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
  // [5.2] Special functions

  // Implementation-space details.
  namespace __detail
  {
  _GLIBCXX_BEGIN_NAMESPACE_VERSION

    /**
     *   @brief  Return the Legendre polynomial by recursion on order
     *           @f$ l @f$.
     * 
     *   The Legendre function of @f$ l @f$ and @f$ x @f$,
     *   @f$ P_l(x) @f$, is defined by:
     *   @f[
     *     P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
     *   @f]
     * 
     *   @param  l  The order of the Legendre polynomial.  @f$l >= 0@f$.
     *   @param  x  The argument of the Legendre polynomial.  @f$|x| <= 1@f$.
     */
    template<typename _Tp>
    _Tp
    __poly_legendre_p(unsigned int __l, _Tp __x)
    {

      if ((__x < _Tp(-1)) || (__x > _Tp(+1)))
        std::__throw_domain_error(__N("Argument out of range"
                                      " in __poly_legendre_p."));
      else if (__isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__x == +_Tp(1))
        return +_Tp(1);
      else if (__x == -_Tp(1))
        return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));
      else
        {
          _Tp __p_lm2 = _Tp(1);
          if (__l == 0)
            return __p_lm2;

          _Tp __p_lm1 = __x;
          if (__l == 1)
            return __p_lm1;

          _Tp __p_l = 0;
          for (unsigned int __ll = 2; __ll <= __l; ++__ll)
            {
              //  This arrangement is supposed to be better for roundoff
              //  protection, Arfken, 2nd Ed, Eq 12.17a.
              __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2
                    - (__x * __p_lm1 - __p_lm2) / _Tp(__ll);
              __p_lm2 = __p_lm1;
              __p_lm1 = __p_l;
            }

          return __p_l;
        }
    }


    /**
     *   @brief  Return the associated Legendre function by recursion
     *           on @f$ l @f$.
     * 
     *   The associated Legendre function is derived from the Legendre function
     *   @f$ P_l(x) @f$ by the Rodrigues formula:
     *   @f[
     *     P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
     *   @f]
     * 
     *   @param  l  The order of the associated Legendre function.
     *              @f$ l >= 0 @f$.
     *   @param  m  The order of the associated Legendre function.
     *              @f$ m <= l @f$.
     *   @param  x  The argument of the associated Legendre function.
     *              @f$ |x| <= 1 @f$.
     */
    template<typename _Tp>
    _Tp
    __assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x)
    {

      if (__x < _Tp(-1) || __x > _Tp(+1))
        std::__throw_domain_error(__N("Argument out of range"
                                      " in __assoc_legendre_p."));
      else if (__m > __l)
        std::__throw_domain_error(__N("Degree out of range"
                                      " in __assoc_legendre_p."));
      else if (__isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__m == 0)
        return __poly_legendre_p(__l, __x);
      else
        {
          _Tp __p_mm = _Tp(1);
          if (__m > 0)
            {
              //  Two square roots seem more accurate more of the time
              //  than just one.
              _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);
              _Tp __fact = _Tp(1);
              for (unsigned int __i = 1; __i <= __m; ++__i)
                {
                  __p_mm *= -__fact * __root;
                  __fact += _Tp(2);
                }
            }
          if (__l == __m)
            return __p_mm;

          _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;
          if (__l == __m + 1)
            return __p_mp1m;

          _Tp __p_lm2m = __p_mm;
          _Tp __P_lm1m = __p_mp1m;
          _Tp __p_lm = _Tp(0);
          for (unsigned int __j = __m + 2; __j <= __l; ++__j)
            {
              __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m
                      - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);
              __p_lm2m = __P_lm1m;
              __P_lm1m = __p_lm;
            }

          return __p_lm;
        }
    }


    /**
     *   @brief  Return the spherical associated Legendre function.
     * 
     *   The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,
     *   and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where
     *   @f[
     *      Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
     *                                  \frac{(l-m)!}{(l+m)!}]
     *                     P_l^m(\cos\theta) \exp^{im\phi}
     *   @f]
     *   is the spherical harmonic function and @f$ P_l^m(x) @f$ is the
     *   associated Legendre function.
     * 
     *   This function differs from the associated Legendre function by
     *   argument (@f$x = \cos(\theta)@f$) and by a normalization factor
     *   but this factor is rather large for large @f$ l @f$ and @f$ m @f$
     *   and so this function is stable for larger differences of @f$ l @f$
     *   and @f$ m @f$.
     * 
     *   @param  l  The order of the spherical associated Legendre function.
     *              @f$ l >= 0 @f$.
     *   @param  m  The order of the spherical associated Legendre function.
     *              @f$ m <= l @f$.
     *   @param  theta  The radian angle argument of the spherical associated
     *                  Legendre function.
     */
    template <typename _Tp>
    _Tp
    __sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
    {
      if (__isnan(__theta))
        return std::numeric_limits<_Tp>::quiet_NaN();

      const _Tp __x = std::cos(__theta);

      if (__l < __m)
        {
          std::__throw_domain_error(__N("Bad argument "
                                        "in __sph_legendre."));
        }
      else if (__m == 0)
        {
          _Tp __P = __poly_legendre_p(__l, __x);
          _Tp __fact = std::sqrt(_Tp(2 * __l + 1)
                     / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
          __P *= __fact;
          return __P;
        }
      else if (__x == _Tp(1) || __x == -_Tp(1))
        {
          //  m > 0 here
          return _Tp(0);
        }
      else
        {
          // m > 0 and |x| < 1 here

          // Starting value for recursion.
          // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )
          //             (-1)^m (1-x^2)^(m/2) / pi^(1/4)
          const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));
          const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));
#if _GLIBCXX_USE_C99_MATH_TR1
          const _Tp __lncirc = std::tr1::log1p(-__x * __x);
#else
          const _Tp __lncirc = std::log(_Tp(1) - __x * __x);
#endif
          //  Gamma(m+1/2) / Gamma(m)
#if _GLIBCXX_USE_C99_MATH_TR1
          const _Tp __lnpoch = std::tr1::lgamma(_Tp(__m + _Tp(0.5L)))
                             - std::tr1::lgamma(_Tp(__m));
#else
          const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))
                             - __log_gamma(_Tp(__m));
#endif
          const _Tp __lnpre_val =
                    -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
                    + _Tp(0.5L) * (__lnpoch + __m * __lncirc);
          _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
                   / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
          _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
          _Tp __y_mp1m = __y_mp1m_factor * __y_mm;

          if (__l == __m)
            {
              return __y_mm;
            }
          else if (__l == __m + 1)
            {
              return __y_mp1m;
            }
          else
            {
              _Tp __y_lm = _Tp(0);

              // Compute Y_l^m, l > m+1, upward recursion on l.
              for ( int __ll = __m + 2; __ll <= __l; ++__ll)
                {
                  const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);
                  const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);
                  const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)
                                                       * _Tp(2 * __ll - 1));
                  const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)
                                                                / _Tp(2 * __ll - 3));
                  __y_lm = (__x * __y_mp1m * __fact1
                         - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);
                  __y_mm = __y_mp1m;
                  __y_mp1m = __y_lm;
                }

              return __y_lm;
            }
        }
    }

  _GLIBCXX_END_NAMESPACE_VERSION
  } // namespace std::tr1::__detail
}
}

#endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC

Filemanager

Name Type Size Permission Actions
array File 6.8 KB 0644
bessel_function.tcc File 21.6 KB 0644
beta_function.tcc File 5.47 KB 0644
ccomplex File 1.23 KB 0644
cctype File 1.38 KB 0644
cfenv File 1.96 KB 0644
cfloat File 1.35 KB 0644
cinttypes File 2.2 KB 0644
climits File 1.42 KB 0644
cmath File 36.55 KB 0644
complex File 12.04 KB 0644
complex.h File 1.23 KB 0644
cstdarg File 1.22 KB 0644
cstdbool File 1.31 KB 0644
cstdint File 2.56 KB 0644
cstdio File 1.44 KB 0644
cstdlib File 1.74 KB 0644
ctgmath File 1.22 KB 0644
ctime File 1.21 KB 0644
ctype.h File 1.18 KB 0644
cwchar File 1.67 KB 0644
cwctype File 1.42 KB 0644
ell_integral.tcc File 26.85 KB 0644
exp_integral.tcc File 15.41 KB 0644
fenv.h File 1.18 KB 0644
float.h File 1.18 KB 0644
functional File 69.15 KB 0644
functional_hash.h File 5.7 KB 0644
gamma.tcc File 13.97 KB 0644
hashtable.h File 40.56 KB 0644
hashtable_policy.h File 24.64 KB 0644
hypergeometric.tcc File 27.07 KB 0644
inttypes.h File 1.24 KB 0644
legendre_function.tcc File 10.32 KB 0644
limits.h File 1.19 KB 0644
math.h File 4.45 KB 0644
memory File 1.75 KB 0644
modified_bessel_func.tcc File 15.35 KB 0644
poly_hermite.tcc File 3.61 KB 0644
poly_laguerre.tcc File 11.08 KB 0644
random File 1.55 KB 0644
random.h File 71.48 KB 0644
random.tcc File 52.73 KB 0644
regex File 90.77 KB 0644
riemann_zeta.tcc File 13.34 KB 0644
shared_ptr.h File 31.91 KB 0644
special_function_util.h File 4.71 KB 0644
stdarg.h File 1.19 KB 0644
stdbool.h File 1.19 KB 0644
stdint.h File 1.19 KB 0644
stdio.h File 1.18 KB 0644
stdlib.h File 1.45 KB 0644
tgmath.h File 1.23 KB 0644
tuple File 11.83 KB 0644
type_traits File 18.57 KB 0644
unordered_map File 1.54 KB 0644
unordered_map.h File 9.98 KB 0644
unordered_set File 1.54 KB 0644
unordered_set.h File 9.32 KB 0644
utility File 3.15 KB 0644
wchar.h File 1.22 KB 0644
wctype.h File 1.23 KB 0644