[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@3.145.178.226: ~ $
// Special functions -*- C++ -*-

// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file tr1/modified_bessel_func.tcc
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{tr1/cmath}
 */

//
// ISO C++ 14882 TR1: 5.2  Special functions
//

// Written by Edward Smith-Rowland.
//
// References:
//   (1) Handbook of Mathematical Functions,
//       Ed. Milton Abramowitz and Irene A. Stegun,
//       Dover Publications,
//       Section 9, pp. 355-434, Section 10 pp. 435-478
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
//       2nd ed, pp. 246-249.

#ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
#define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1

#include "special_function_util.h"

namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
  // [5.2] Special functions

  // Implementation-space details.
  namespace __detail
  {
  _GLIBCXX_BEGIN_NAMESPACE_VERSION

    /**
     *   @brief  Compute the modified Bessel functions @f$ I_\nu(x) @f$ and
     *           @f$ K_\nu(x) @f$ and their first derivatives
     *           @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively.
     *           These four functions are computed together for numerical
     *           stability.
     *
     *   @param  __nu  The order of the Bessel functions.
     *   @param  __x   The argument of the Bessel functions.
     *   @param  __Inu  The output regular modified Bessel function.
     *   @param  __Knu  The output irregular modified Bessel function.
     *   @param  __Ipnu  The output derivative of the regular
     *                   modified Bessel function.
     *   @param  __Kpnu  The output derivative of the irregular
     *                   modified Bessel function.
     */
    template <typename _Tp>
    void
    __bessel_ik(_Tp __nu, _Tp __x,
                _Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu)
    {
      if (__x == _Tp(0))
        {
          if (__nu == _Tp(0))
            {
              __Inu = _Tp(1);
              __Ipnu = _Tp(0);
            }
          else if (__nu == _Tp(1))
            {
              __Inu = _Tp(0);
              __Ipnu = _Tp(0.5L);
            }
          else
            {
              __Inu = _Tp(0);
              __Ipnu = _Tp(0);
            }
          __Knu = std::numeric_limits<_Tp>::infinity();
          __Kpnu = -std::numeric_limits<_Tp>::infinity();
          return;
        }

      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
      const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon();
      const int __max_iter = 15000;
      const _Tp __x_min = _Tp(2);

      const int __nl = static_cast<int>(__nu + _Tp(0.5L));

      const _Tp __mu = __nu - __nl;
      const _Tp __mu2 = __mu * __mu;
      const _Tp __xi = _Tp(1) / __x;
      const _Tp __xi2 = _Tp(2) * __xi;
      _Tp __h = __nu * __xi;
      if ( __h < __fp_min )
        __h = __fp_min;
      _Tp __b = __xi2 * __nu;
      _Tp __d = _Tp(0);
      _Tp __c = __h;
      int __i;
      for ( __i = 1; __i <= __max_iter; ++__i )
        {
          __b += __xi2;
          __d = _Tp(1) / (__b + __d);
          __c = __b + _Tp(1) / __c;
          const _Tp __del = __c * __d;
          __h *= __del;
          if (std::abs(__del - _Tp(1)) < __eps)
            break;
        }
      if (__i > __max_iter)
        std::__throw_runtime_error(__N("Argument x too large "
                                       "in __bessel_ik; "
                                       "try asymptotic expansion."));
      _Tp __Inul = __fp_min;
      _Tp __Ipnul = __h * __Inul;
      _Tp __Inul1 = __Inul;
      _Tp __Ipnu1 = __Ipnul;
      _Tp __fact = __nu * __xi;
      for (int __l = __nl; __l >= 1; --__l)
        {
          const _Tp __Inutemp = __fact * __Inul + __Ipnul;
          __fact -= __xi;
          __Ipnul = __fact * __Inutemp + __Inul;
          __Inul = __Inutemp;
        }
      _Tp __f = __Ipnul / __Inul;
      _Tp __Kmu, __Knu1;
      if (__x < __x_min)
        {
          const _Tp __x2 = __x / _Tp(2);
          const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
          const _Tp __fact = (std::abs(__pimu) < __eps
                            ? _Tp(1) : __pimu / std::sin(__pimu));
          _Tp __d = -std::log(__x2);
          _Tp __e = __mu * __d;
          const _Tp __fact2 = (std::abs(__e) < __eps
                            ? _Tp(1) : std::sinh(__e) / __e);
          _Tp __gam1, __gam2, __gampl, __gammi;
          __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
          _Tp __ff = __fact
                   * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
          _Tp __sum = __ff;
          __e = std::exp(__e);
          _Tp __p = __e / (_Tp(2) * __gampl);
          _Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi);
          _Tp __c = _Tp(1);
          __d = __x2 * __x2;
          _Tp __sum1 = __p;
          int __i;
          for (__i = 1; __i <= __max_iter; ++__i)
            {
              __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
              __c *= __d / __i;
              __p /= __i - __mu;
              __q /= __i + __mu;
              const _Tp __del = __c * __ff;
              __sum += __del; 
              const _Tp __del1 = __c * (__p - __i * __ff);
              __sum1 += __del1;
              if (std::abs(__del) < __eps * std::abs(__sum))
                break;
            }
          if (__i > __max_iter)
            std::__throw_runtime_error(__N("Bessel k series failed to converge "
                                           "in __bessel_ik."));
          __Kmu = __sum;
          __Knu1 = __sum1 * __xi2;
        }
      else
        {
          _Tp __b = _Tp(2) * (_Tp(1) + __x);
          _Tp __d = _Tp(1) / __b;
          _Tp __delh = __d;
          _Tp __h = __delh;
          _Tp __q1 = _Tp(0);
          _Tp __q2 = _Tp(1);
          _Tp __a1 = _Tp(0.25L) - __mu2;
          _Tp __q = __c = __a1;
          _Tp __a = -__a1;
          _Tp __s = _Tp(1) + __q * __delh;
          int __i;
          for (__i = 2; __i <= __max_iter; ++__i)
            {
              __a -= 2 * (__i - 1);
              __c = -__a * __c / __i;
              const _Tp __qnew = (__q1 - __b * __q2) / __a;
              __q1 = __q2;
              __q2 = __qnew;
              __q += __c * __qnew;
              __b += _Tp(2);
              __d = _Tp(1) / (__b + __a * __d);
              __delh = (__b * __d - _Tp(1)) * __delh;
              __h += __delh;
              const _Tp __dels = __q * __delh;
              __s += __dels;
              if ( std::abs(__dels / __s) < __eps )
                break;
            }
          if (__i > __max_iter)
            std::__throw_runtime_error(__N("Steed's method failed "
                                           "in __bessel_ik."));
          __h = __a1 * __h;
          __Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x))
                * std::exp(-__x) / __s;
          __Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi;
        }

      _Tp __Kpmu = __mu * __xi * __Kmu - __Knu1;
      _Tp __Inumu = __xi / (__f * __Kmu - __Kpmu);
      __Inu = __Inumu * __Inul1 / __Inul;
      __Ipnu = __Inumu * __Ipnu1 / __Inul;
      for ( __i = 1; __i <= __nl; ++__i )
        {
          const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu;
          __Kmu = __Knu1;
          __Knu1 = __Knutemp;
        }
      __Knu = __Kmu;
      __Kpnu = __nu * __xi * __Kmu - __Knu1;
  
      return;
    }


    /**
     *   @brief  Return the regular modified Bessel function of order
     *           \f$ \nu \f$: \f$ I_{\nu}(x) \f$.
     *
     *   The regular modified cylindrical Bessel function is:
     *   @f[
     *    I_{\nu}(x) = \sum_{k=0}^{\infty}
     *              \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
     *   @f]
     *
     *   @param  __nu  The order of the regular modified Bessel function.
     *   @param  __x   The argument of the regular modified Bessel function.
     *   @return  The output regular modified Bessel function.
     */
    template<typename _Tp>
    _Tp
    __cyl_bessel_i(_Tp __nu, _Tp __x)
    {
      if (__nu < _Tp(0) || __x < _Tp(0))
        std::__throw_domain_error(__N("Bad argument "
                                      "in __cyl_bessel_i."));
      else if (__isnan(__nu) || __isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
        return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200);
      else
        {
          _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
          __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
          return __I_nu;
        }
    }


    /**
     *   @brief  Return the irregular modified Bessel function
     *           \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$.
     *
     *   The irregular modified Bessel function is defined by:
     *   @f[
     *      K_{\nu}(x) = \frac{\pi}{2}
     *                   \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi}
     *   @f]
     *   where for integral \f$ \nu = n \f$ a limit is taken:
     *   \f$ lim_{\nu \to n} \f$.
     *
     *   @param  __nu  The order of the irregular modified Bessel function.
     *   @param  __x   The argument of the irregular modified Bessel function.
     *   @return  The output irregular modified Bessel function.
     */
    template<typename _Tp>
    _Tp
    __cyl_bessel_k(_Tp __nu, _Tp __x)
    {
      if (__nu < _Tp(0) || __x < _Tp(0))
        std::__throw_domain_error(__N("Bad argument "
                                      "in __cyl_bessel_k."));
      else if (__isnan(__nu) || __isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else
        {
          _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
          __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
          return __K_nu;
        }
    }


    /**
     *   @brief  Compute the spherical modified Bessel functions
     *           @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first
     *           derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$
     *           respectively.
     *
     *   @param  __n  The order of the modified spherical Bessel function.
     *   @param  __x  The argument of the modified spherical Bessel function.
     *   @param  __i_n  The output regular modified spherical Bessel function.
     *   @param  __k_n  The output irregular modified spherical
     *                  Bessel function.
     *   @param  __ip_n  The output derivative of the regular modified
     *                   spherical Bessel function.
     *   @param  __kp_n  The output derivative of the irregular modified
     *                   spherical Bessel function.
     */
    template <typename _Tp>
    void
    __sph_bessel_ik(unsigned int __n, _Tp __x,
                    _Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n)
    {
      const _Tp __nu = _Tp(__n) + _Tp(0.5L);

      _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
      __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);

      const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
                         / std::sqrt(__x);

      __i_n = __factor * __I_nu;
      __k_n = __factor * __K_nu;
      __ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x);
      __kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x);

      return;
    }


    /**
     *   @brief  Compute the Airy functions
     *           @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first
     *           derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$
     *           respectively.
     *
     *   @param  __n  The order of the Airy functions.
     *   @param  __x  The argument of the Airy functions.
     *   @param  __i_n  The output Airy function.
     *   @param  __k_n  The output Airy function.
     *   @param  __ip_n  The output derivative of the Airy function.
     *   @param  __kp_n  The output derivative of the Airy function.
     */
    template <typename _Tp>
    void
    __airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip)
    {
      const _Tp __absx = std::abs(__x);
      const _Tp __rootx = std::sqrt(__absx);
      const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3);

      if (__isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__x > _Tp(0))
        {
          _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;

          __bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
          __Ai = __rootx * __K_nu
               / (__numeric_constants<_Tp>::__sqrt3()
                * __numeric_constants<_Tp>::__pi());
          __Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi()
                 + _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3());

          __bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
          __Aip = -__x * __K_nu
                / (__numeric_constants<_Tp>::__sqrt3()
                 * __numeric_constants<_Tp>::__pi());
          __Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi()
                      + _Tp(2) * __I_nu
                      / __numeric_constants<_Tp>::__sqrt3());
        }
      else if (__x < _Tp(0))
        {
          _Tp __J_nu, __Jp_nu, __N_nu, __Np_nu;

          __bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
          __Ai = __rootx * (__J_nu
                    - __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
          __Bi = -__rootx * (__N_nu
                    + __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);

          __bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
          __Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3()
                          + __J_nu) / _Tp(2);
          __Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3()
                          - __N_nu) / _Tp(2);
        }
      else
        {
          //  Reference:
          //    Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions.
          //  The number is Ai(0) = 3^{-2/3}/\Gamma(2/3).
          __Ai = _Tp(0.35502805388781723926L);
          __Bi = __Ai * __numeric_constants<_Tp>::__sqrt3();

          //  Reference:
          //    Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions.
          //  The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3).
          __Aip = -_Tp(0.25881940379280679840L);
          __Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3();
        }

      return;
    }

  _GLIBCXX_END_NAMESPACE_VERSION
  } // namespace std::tr1::__detail
}
}

#endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC

Filemanager

Name Type Size Permission Actions
array File 6.8 KB 0644
bessel_function.tcc File 21.6 KB 0644
beta_function.tcc File 5.47 KB 0644
ccomplex File 1.23 KB 0644
cctype File 1.38 KB 0644
cfenv File 1.96 KB 0644
cfloat File 1.35 KB 0644
cinttypes File 2.2 KB 0644
climits File 1.42 KB 0644
cmath File 36.55 KB 0644
complex File 12.04 KB 0644
complex.h File 1.23 KB 0644
cstdarg File 1.22 KB 0644
cstdbool File 1.31 KB 0644
cstdint File 2.56 KB 0644
cstdio File 1.44 KB 0644
cstdlib File 1.74 KB 0644
ctgmath File 1.22 KB 0644
ctime File 1.21 KB 0644
ctype.h File 1.18 KB 0644
cwchar File 1.67 KB 0644
cwctype File 1.42 KB 0644
ell_integral.tcc File 26.85 KB 0644
exp_integral.tcc File 15.41 KB 0644
fenv.h File 1.18 KB 0644
float.h File 1.18 KB 0644
functional File 69.15 KB 0644
functional_hash.h File 5.7 KB 0644
gamma.tcc File 13.97 KB 0644
hashtable.h File 40.56 KB 0644
hashtable_policy.h File 24.64 KB 0644
hypergeometric.tcc File 27.07 KB 0644
inttypes.h File 1.24 KB 0644
legendre_function.tcc File 10.32 KB 0644
limits.h File 1.19 KB 0644
math.h File 4.45 KB 0644
memory File 1.75 KB 0644
modified_bessel_func.tcc File 15.35 KB 0644
poly_hermite.tcc File 3.61 KB 0644
poly_laguerre.tcc File 11.08 KB 0644
random File 1.55 KB 0644
random.h File 71.48 KB 0644
random.tcc File 52.73 KB 0644
regex File 90.77 KB 0644
riemann_zeta.tcc File 13.34 KB 0644
shared_ptr.h File 31.91 KB 0644
special_function_util.h File 4.71 KB 0644
stdarg.h File 1.19 KB 0644
stdbool.h File 1.19 KB 0644
stdint.h File 1.19 KB 0644
stdio.h File 1.18 KB 0644
stdlib.h File 1.45 KB 0644
tgmath.h File 1.23 KB 0644
tuple File 11.83 KB 0644
type_traits File 18.57 KB 0644
unordered_map File 1.54 KB 0644
unordered_map.h File 9.98 KB 0644
unordered_set File 1.54 KB 0644
unordered_set.h File 9.32 KB 0644
utility File 3.15 KB 0644
wchar.h File 1.22 KB 0644
wctype.h File 1.23 KB 0644