[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@18.226.166.207: ~ $
// Special functions -*- C++ -*-

// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file tr1/poly_laguerre.tcc
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{tr1/cmath}
 */

//
// ISO C++ 14882 TR1: 5.2  Special functions
//

// Written by Edward Smith-Rowland based on:
//   (1) Handbook of Mathematical Functions,
//       Ed. Milton Abramowitz and Irene A. Stegun,
//       Dover Publications,
//       Section 13, pp. 509-510, Section 22 pp. 773-802
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl

#ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
#define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1

namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
  // [5.2] Special functions

  // Implementation-space details.
  namespace __detail
  {
  _GLIBCXX_BEGIN_NAMESPACE_VERSION

    /**
     *   @brief This routine returns the associated Laguerre polynomial 
     *          of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
     *   Abramowitz & Stegun, 13.5.21
     *
     *   @param __n The order of the Laguerre function.
     *   @param __alpha The degree of the Laguerre function.
     *   @param __x The argument of the Laguerre function.
     *   @return The value of the Laguerre function of order n,
     *           degree @f$ \alpha @f$, and argument x.
     *
     *  This is from the GNU Scientific Library.
     */
    template<typename _Tpa, typename _Tp>
    _Tp
    __poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x)
    {
      const _Tp __a = -_Tp(__n);
      const _Tp __b = _Tp(__alpha1) + _Tp(1);
      const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
      const _Tp __cos2th = __x / __eta;
      const _Tp __sin2th = _Tp(1) - __cos2th;
      const _Tp __th = std::acos(std::sqrt(__cos2th));
      const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
                        * __numeric_constants<_Tp>::__pi_2()
                        * __eta * __eta * __cos2th * __sin2th;

#if _GLIBCXX_USE_C99_MATH_TR1
      const _Tp __lg_b = std::tr1::lgamma(_Tp(__n) + __b);
      const _Tp __lnfact = std::tr1::lgamma(_Tp(__n + 1));
#else
      const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
      const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
#endif

      _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
                      * std::log(_Tp(0.25L) * __x * __eta);
      _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
      _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
                      + __pre_term1 - __pre_term2;
      _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
      _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
                              * (_Tp(2) * __th
                               - std::sin(_Tp(2) * __th))
                               + __numeric_constants<_Tp>::__pi_4());
      _Tp __ser = __ser_term1 + __ser_term2;

      return std::exp(__lnpre) * __ser;
    }


    /**
     *  @brief  Evaluate the polynomial based on the confluent hypergeometric
     *          function in a safe way, with no restriction on the arguments.
     *
     *   The associated Laguerre function is defined by
     *   @f[
     *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
     *                       _1F_1(-n; \alpha + 1; x)
     *   @f]
     *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
     *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
     *
     *  This function assumes x != 0.
     *
     *  This is from the GNU Scientific Library.
     */
    template<typename _Tpa, typename _Tp>
    _Tp
    __poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x)
    {
      const _Tp __b = _Tp(__alpha1) + _Tp(1);
      const _Tp __mx = -__x;
      const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
                         : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
      //  Get |x|^n/n!
      _Tp __tc = _Tp(1);
      const _Tp __ax = std::abs(__x);
      for (unsigned int __k = 1; __k <= __n; ++__k)
        __tc *= (__ax / __k);

      _Tp __term = __tc * __tc_sgn;
      _Tp __sum = __term;
      for (int __k = int(__n) - 1; __k >= 0; --__k)
        {
          __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
                  * _Tp(__k + 1) / __mx;
          __sum += __term;
        }

      return __sum;
    }


    /**
     *   @brief This routine returns the associated Laguerre polynomial 
     *          of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
     *          by recursion.
     *
     *   The associated Laguerre function is defined by
     *   @f[
     *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
     *                       _1F_1(-n; \alpha + 1; x)
     *   @f]
     *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
     *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
     *
     *   The associated Laguerre polynomial is defined for integral
     *   @f$ \alpha = m @f$ by:
     *   @f[
     *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
     *   @f]
     *   where the Laguerre polynomial is defined by:
     *   @f[
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
     *   @f]
     *
     *   @param __n The order of the Laguerre function.
     *   @param __alpha The degree of the Laguerre function.
     *   @param __x The argument of the Laguerre function.
     *   @return The value of the Laguerre function of order n,
     *           degree @f$ \alpha @f$, and argument x.
     */
    template<typename _Tpa, typename _Tp>
    _Tp
    __poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x)
    {
      //   Compute l_0.
      _Tp __l_0 = _Tp(1);
      if  (__n == 0)
        return __l_0;

      //  Compute l_1^alpha.
      _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
      if  (__n == 1)
        return __l_1;

      //  Compute l_n^alpha by recursion on n.
      _Tp __l_n2 = __l_0;
      _Tp __l_n1 = __l_1;
      _Tp __l_n = _Tp(0);
      for  (unsigned int __nn = 2; __nn <= __n; ++__nn)
        {
            __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
                  * __l_n1 / _Tp(__nn)
                  - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
            __l_n2 = __l_n1;
            __l_n1 = __l_n;
        }

      return __l_n;
    }


    /**
     *   @brief This routine returns the associated Laguerre polynomial
     *          of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
     *
     *   The associated Laguerre function is defined by
     *   @f[
     *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
     *                       _1F_1(-n; \alpha + 1; x)
     *   @f]
     *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
     *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
     *
     *   The associated Laguerre polynomial is defined for integral
     *   @f$ \alpha = m @f$ by:
     *   @f[
     *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
     *   @f]
     *   where the Laguerre polynomial is defined by:
     *   @f[
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
     *   @f]
     *
     *   @param __n The order of the Laguerre function.
     *   @param __alpha The degree of the Laguerre function.
     *   @param __x The argument of the Laguerre function.
     *   @return The value of the Laguerre function of order n,
     *           degree @f$ \alpha @f$, and argument x.
     */
    template<typename _Tpa, typename _Tp>
    _Tp
    __poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x)
    {
      if (__x < _Tp(0))
        std::__throw_domain_error(__N("Negative argument "
                                      "in __poly_laguerre."));
      //  Return NaN on NaN input.
      else if (__isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__n == 0)
        return _Tp(1);
      else if (__n == 1)
        return _Tp(1) + _Tp(__alpha1) - __x;
      else if (__x == _Tp(0))
        {
          _Tp __prod = _Tp(__alpha1) + _Tp(1);
          for (unsigned int __k = 2; __k <= __n; ++__k)
            __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
          return __prod;
        }
      else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
            && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
        return __poly_laguerre_large_n(__n, __alpha1, __x);
      else if (_Tp(__alpha1) >= _Tp(0)
           || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
        return __poly_laguerre_recursion(__n, __alpha1, __x);
      else
        return __poly_laguerre_hyperg(__n, __alpha1, __x);
    }


    /**
     *   @brief This routine returns the associated Laguerre polynomial
     *          of order n, degree m: @f$ L_n^m(x) @f$.
     *
     *   The associated Laguerre polynomial is defined for integral
     *   @f$ \alpha = m @f$ by:
     *   @f[
     *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
     *   @f]
     *   where the Laguerre polynomial is defined by:
     *   @f[
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
     *   @f]
     *
     *   @param __n The order of the Laguerre polynomial.
     *   @param __m The degree of the Laguerre polynomial.
     *   @param __x The argument of the Laguerre polynomial.
     *   @return The value of the associated Laguerre polynomial of order n,
     *           degree m, and argument x.
     */
    template<typename _Tp>
    inline _Tp
    __assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
    { return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); }


    /**
     *   @brief This routine returns the Laguerre polynomial
     *          of order n: @f$ L_n(x) @f$.
     *
     *   The Laguerre polynomial is defined by:
     *   @f[
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
     *   @f]
     *
     *   @param __n The order of the Laguerre polynomial.
     *   @param __x The argument of the Laguerre polynomial.
     *   @return The value of the Laguerre polynomial of order n
     *           and argument x.
     */
    template<typename _Tp>
    inline _Tp
    __laguerre(unsigned int __n, _Tp __x)
    { return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); }

  _GLIBCXX_END_NAMESPACE_VERSION
  } // namespace std::tr1::__detail
}
}

#endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC

Filemanager

Name Type Size Permission Actions
array File 6.8 KB 0644
bessel_function.tcc File 21.6 KB 0644
beta_function.tcc File 5.47 KB 0644
ccomplex File 1.23 KB 0644
cctype File 1.38 KB 0644
cfenv File 1.96 KB 0644
cfloat File 1.35 KB 0644
cinttypes File 2.2 KB 0644
climits File 1.42 KB 0644
cmath File 36.55 KB 0644
complex File 12.04 KB 0644
complex.h File 1.23 KB 0644
cstdarg File 1.22 KB 0644
cstdbool File 1.31 KB 0644
cstdint File 2.56 KB 0644
cstdio File 1.44 KB 0644
cstdlib File 1.74 KB 0644
ctgmath File 1.22 KB 0644
ctime File 1.21 KB 0644
ctype.h File 1.18 KB 0644
cwchar File 1.67 KB 0644
cwctype File 1.42 KB 0644
ell_integral.tcc File 26.85 KB 0644
exp_integral.tcc File 15.41 KB 0644
fenv.h File 1.18 KB 0644
float.h File 1.18 KB 0644
functional File 69.15 KB 0644
functional_hash.h File 5.7 KB 0644
gamma.tcc File 13.97 KB 0644
hashtable.h File 40.56 KB 0644
hashtable_policy.h File 24.64 KB 0644
hypergeometric.tcc File 27.07 KB 0644
inttypes.h File 1.24 KB 0644
legendre_function.tcc File 10.32 KB 0644
limits.h File 1.19 KB 0644
math.h File 4.45 KB 0644
memory File 1.75 KB 0644
modified_bessel_func.tcc File 15.35 KB 0644
poly_hermite.tcc File 3.61 KB 0644
poly_laguerre.tcc File 11.08 KB 0644
random File 1.55 KB 0644
random.h File 71.48 KB 0644
random.tcc File 52.73 KB 0644
regex File 90.77 KB 0644
riemann_zeta.tcc File 13.34 KB 0644
shared_ptr.h File 31.91 KB 0644
special_function_util.h File 4.71 KB 0644
stdarg.h File 1.19 KB 0644
stdbool.h File 1.19 KB 0644
stdint.h File 1.19 KB 0644
stdio.h File 1.18 KB 0644
stdlib.h File 1.45 KB 0644
tgmath.h File 1.23 KB 0644
tuple File 11.83 KB 0644
type_traits File 18.57 KB 0644
unordered_map File 1.54 KB 0644
unordered_map.h File 9.98 KB 0644
unordered_set File 1.54 KB 0644
unordered_set.h File 9.32 KB 0644
utility File 3.15 KB 0644
wchar.h File 1.22 KB 0644
wctype.h File 1.23 KB 0644