[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@3.141.12.236: ~ $
// Special functions -*- C++ -*-

// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file tr1/riemann_zeta.tcc
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{tr1/cmath}
 */

//
// ISO C++ 14882 TR1: 5.2  Special functions
//

// Written by Edward Smith-Rowland based on:
//   (1) Handbook of Mathematical Functions,
//       Ed. by Milton Abramowitz and Irene A. Stegun,
//       Dover Publications, New-York, Section 5, pp. 807-808.
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
//   (3) Gamma, Exploring Euler's Constant, Julian Havil,
//       Princeton, 2003.

#ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC
#define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1

#include "special_function_util.h"

namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
  // [5.2] Special functions

  // Implementation-space details.
  namespace __detail
  {
  _GLIBCXX_BEGIN_NAMESPACE_VERSION

    /**
     *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
     *           by summation for s > 1.
     * 
     *   The Riemann zeta function is defined by:
     *    \f[
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
     *    \f]
     *   For s < 1 use the reflection formula:
     *    \f[
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
     *    \f]
     */
    template<typename _Tp>
    _Tp
    __riemann_zeta_sum(_Tp __s)
    {
      //  A user shouldn't get to this.
      if (__s < _Tp(1))
        std::__throw_domain_error(__N("Bad argument in zeta sum."));

      const unsigned int max_iter = 10000;
      _Tp __zeta = _Tp(0);
      for (unsigned int __k = 1; __k < max_iter; ++__k)
        {
          _Tp __term = std::pow(static_cast<_Tp>(__k), -__s);
          if (__term < std::numeric_limits<_Tp>::epsilon())
            {
              break;
            }
          __zeta += __term;
        }

      return __zeta;
    }


    /**
     *   @brief  Evaluate the Riemann zeta function @f$ \zeta(s) @f$
     *           by an alternate series for s > 0.
     * 
     *   The Riemann zeta function is defined by:
     *    \f[
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
     *    \f]
     *   For s < 1 use the reflection formula:
     *    \f[
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
     *    \f]
     */
    template<typename _Tp>
    _Tp
    __riemann_zeta_alt(_Tp __s)
    {
      _Tp __sgn = _Tp(1);
      _Tp __zeta = _Tp(0);
      for (unsigned int __i = 1; __i < 10000000; ++__i)
        {
          _Tp __term = __sgn / std::pow(__i, __s);
          if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
            break;
          __zeta += __term;
          __sgn *= _Tp(-1);
        }
      __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);

      return __zeta;
    }


    /**
     *   @brief  Evaluate the Riemann zeta function by series for all s != 1.
     *           Convergence is great until largish negative numbers.
     *           Then the convergence of the > 0 sum gets better.
     *
     *   The series is:
     *    \f[
     *      \zeta(s) = \frac{1}{1-2^{1-s}}
     *                 \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
     *                 \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
     *    \f]
     *   Havil 2003, p. 206.
     *
     *   The Riemann zeta function is defined by:
     *    \f[
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
     *    \f]
     *   For s < 1 use the reflection formula:
     *    \f[
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
     *    \f]
     */
    template<typename _Tp>
    _Tp
    __riemann_zeta_glob(_Tp __s)
    {
      _Tp __zeta = _Tp(0);

      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
      //  Max e exponent before overflow.
      const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
                               * std::log(_Tp(10)) - _Tp(1);

      //  This series works until the binomial coefficient blows up
      //  so use reflection.
      if (__s < _Tp(0))
        {
#if _GLIBCXX_USE_C99_MATH_TR1
          if (std::tr1::fmod(__s,_Tp(2)) == _Tp(0))
            return _Tp(0);
          else
#endif
            {
              _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s);
              __zeta *= std::pow(_Tp(2)
                     * __numeric_constants<_Tp>::__pi(), __s)
                     * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
#if _GLIBCXX_USE_C99_MATH_TR1
                     * std::exp(std::tr1::lgamma(_Tp(1) - __s))
#else
                     * std::exp(__log_gamma(_Tp(1) - __s))
#endif
                     / __numeric_constants<_Tp>::__pi();
              return __zeta;
            }
        }

      _Tp __num = _Tp(0.5L);
      const unsigned int __maxit = 10000;
      for (unsigned int __i = 0; __i < __maxit; ++__i)
        {
          bool __punt = false;
          _Tp __sgn = _Tp(1);
          _Tp __term = _Tp(0);
          for (unsigned int __j = 0; __j <= __i; ++__j)
            {
#if _GLIBCXX_USE_C99_MATH_TR1
              _Tp __bincoeff =  std::tr1::lgamma(_Tp(1 + __i))
                              - std::tr1::lgamma(_Tp(1 + __j))
                              - std::tr1::lgamma(_Tp(1 + __i - __j));
#else
              _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
                              - __log_gamma(_Tp(1 + __j))
                              - __log_gamma(_Tp(1 + __i - __j));
#endif
              if (__bincoeff > __max_bincoeff)
                {
                  //  This only gets hit for x << 0.
                  __punt = true;
                  break;
                }
              __bincoeff = std::exp(__bincoeff);
              __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s);
              __sgn *= _Tp(-1);
            }
          if (__punt)
            break;
          __term *= __num;
          __zeta += __term;
          if (std::abs(__term/__zeta) < __eps)
            break;
          __num *= _Tp(0.5L);
        }

      __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);

      return __zeta;
    }


    /**
     *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
     *           using the product over prime factors.
     *    \f[
     *      \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}}
     *    \f]
     *    where @f$ {p_i} @f$ are the prime numbers.
     * 
     *   The Riemann zeta function is defined by:
     *    \f[
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
     *    \f]
     *   For s < 1 use the reflection formula:
     *    \f[
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
     *    \f]
     */
    template<typename _Tp>
    _Tp
    __riemann_zeta_product(_Tp __s)
    {
      static const _Tp __prime[] = {
        _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19),
        _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47),
        _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79),
        _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109)
      };
      static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp);

      _Tp __zeta = _Tp(1);
      for (unsigned int __i = 0; __i < __num_primes; ++__i)
        {
          const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s);
          __zeta *= __fact;
          if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon())
            break;
        }

      __zeta = _Tp(1) / __zeta;

      return __zeta;
    }


    /**
     *   @brief  Return the Riemann zeta function @f$ \zeta(s) @f$.
     * 
     *   The Riemann zeta function is defined by:
     *    \f[
     *      \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
     *                 \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2})
     *                 \Gamma (1 - s) \zeta (1 - s) for s < 1
     *    \f]
     *   For s < 1 use the reflection formula:
     *    \f[
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
     *    \f]
     */
    template<typename _Tp>
    _Tp
    __riemann_zeta(_Tp __s)
    {
      if (__isnan(__s))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__s == _Tp(1))
        return std::numeric_limits<_Tp>::infinity();
      else if (__s < -_Tp(19))
        {
          _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s);
          __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s)
                 * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
#if _GLIBCXX_USE_C99_MATH_TR1
                 * std::exp(std::tr1::lgamma(_Tp(1) - __s))
#else
                 * std::exp(__log_gamma(_Tp(1) - __s))
#endif
                 / __numeric_constants<_Tp>::__pi();
          return __zeta;
        }
      else if (__s < _Tp(20))
        {
          //  Global double sum or McLaurin?
          bool __glob = true;
          if (__glob)
            return __riemann_zeta_glob(__s);
          else
            {
              if (__s > _Tp(1))
                return __riemann_zeta_sum(__s);
              else
                {
                  _Tp __zeta = std::pow(_Tp(2)
                                * __numeric_constants<_Tp>::__pi(), __s)
                         * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
#if _GLIBCXX_USE_C99_MATH_TR1
                             * std::tr1::tgamma(_Tp(1) - __s)
#else
                             * std::exp(__log_gamma(_Tp(1) - __s))
#endif
                             * __riemann_zeta_sum(_Tp(1) - __s);
                  return __zeta;
                }
            }
        }
      else
        return __riemann_zeta_product(__s);
    }


    /**
     *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
     *           for all s != 1 and x > -1.
     * 
     *   The Hurwitz zeta function is defined by:
     *   @f[
     *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
     *   @f]
     *   The Riemann zeta function is a special case:
     *   @f[
     *     \zeta(s) = \zeta(1,s)
     *   @f]
     * 
     *   This functions uses the double sum that converges for s != 1
     *   and x > -1:
     *   @f[
     *     \zeta(x,s) = \frac{1}{s-1}
     *                \sum_{n=0}^{\infty} \frac{1}{n + 1}
     *                \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s}
     *   @f]
     */
    template<typename _Tp>
    _Tp
    __hurwitz_zeta_glob(_Tp __a, _Tp __s)
    {
      _Tp __zeta = _Tp(0);

      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
      //  Max e exponent before overflow.
      const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
                               * std::log(_Tp(10)) - _Tp(1);

      const unsigned int __maxit = 10000;
      for (unsigned int __i = 0; __i < __maxit; ++__i)
        {
          bool __punt = false;
          _Tp __sgn = _Tp(1);
          _Tp __term = _Tp(0);
          for (unsigned int __j = 0; __j <= __i; ++__j)
            {
#if _GLIBCXX_USE_C99_MATH_TR1
              _Tp __bincoeff =  std::tr1::lgamma(_Tp(1 + __i))
                              - std::tr1::lgamma(_Tp(1 + __j))
                              - std::tr1::lgamma(_Tp(1 + __i - __j));
#else
              _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
                              - __log_gamma(_Tp(1 + __j))
                              - __log_gamma(_Tp(1 + __i - __j));
#endif
              if (__bincoeff > __max_bincoeff)
                {
                  //  This only gets hit for x << 0.
                  __punt = true;
                  break;
                }
              __bincoeff = std::exp(__bincoeff);
              __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s);
              __sgn *= _Tp(-1);
            }
          if (__punt)
            break;
          __term /= _Tp(__i + 1);
          if (std::abs(__term / __zeta) < __eps)
            break;
          __zeta += __term;
        }

      __zeta /= __s - _Tp(1);

      return __zeta;
    }


    /**
     *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
     *           for all s != 1 and x > -1.
     * 
     *   The Hurwitz zeta function is defined by:
     *   @f[
     *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
     *   @f]
     *   The Riemann zeta function is a special case:
     *   @f[
     *     \zeta(s) = \zeta(1,s)
     *   @f]
     */
    template<typename _Tp>
    inline _Tp
    __hurwitz_zeta(_Tp __a, _Tp __s)
    { return __hurwitz_zeta_glob(__a, __s); }

  _GLIBCXX_END_NAMESPACE_VERSION
  } // namespace std::tr1::__detail
}
}

#endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC

Filemanager

Name Type Size Permission Actions
array File 6.8 KB 0644
bessel_function.tcc File 21.6 KB 0644
beta_function.tcc File 5.47 KB 0644
ccomplex File 1.23 KB 0644
cctype File 1.38 KB 0644
cfenv File 1.96 KB 0644
cfloat File 1.35 KB 0644
cinttypes File 2.2 KB 0644
climits File 1.42 KB 0644
cmath File 36.55 KB 0644
complex File 12.04 KB 0644
complex.h File 1.23 KB 0644
cstdarg File 1.22 KB 0644
cstdbool File 1.31 KB 0644
cstdint File 2.56 KB 0644
cstdio File 1.44 KB 0644
cstdlib File 1.74 KB 0644
ctgmath File 1.22 KB 0644
ctime File 1.21 KB 0644
ctype.h File 1.18 KB 0644
cwchar File 1.67 KB 0644
cwctype File 1.42 KB 0644
ell_integral.tcc File 26.85 KB 0644
exp_integral.tcc File 15.41 KB 0644
fenv.h File 1.18 KB 0644
float.h File 1.18 KB 0644
functional File 69.15 KB 0644
functional_hash.h File 5.7 KB 0644
gamma.tcc File 13.97 KB 0644
hashtable.h File 40.56 KB 0644
hashtable_policy.h File 24.64 KB 0644
hypergeometric.tcc File 27.07 KB 0644
inttypes.h File 1.24 KB 0644
legendre_function.tcc File 10.32 KB 0644
limits.h File 1.19 KB 0644
math.h File 4.45 KB 0644
memory File 1.75 KB 0644
modified_bessel_func.tcc File 15.35 KB 0644
poly_hermite.tcc File 3.61 KB 0644
poly_laguerre.tcc File 11.08 KB 0644
random File 1.55 KB 0644
random.h File 71.48 KB 0644
random.tcc File 52.73 KB 0644
regex File 90.77 KB 0644
riemann_zeta.tcc File 13.34 KB 0644
shared_ptr.h File 31.91 KB 0644
special_function_util.h File 4.71 KB 0644
stdarg.h File 1.19 KB 0644
stdbool.h File 1.19 KB 0644
stdint.h File 1.19 KB 0644
stdio.h File 1.18 KB 0644
stdlib.h File 1.45 KB 0644
tgmath.h File 1.23 KB 0644
tuple File 11.83 KB 0644
type_traits File 18.57 KB 0644
unordered_map File 1.54 KB 0644
unordered_map.h File 9.98 KB 0644
unordered_set File 1.54 KB 0644
unordered_set.h File 9.32 KB 0644
utility File 3.15 KB 0644
wchar.h File 1.22 KB 0644
wctype.h File 1.23 KB 0644