[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@3.145.35.234: ~ $
// The template and inlines for the -*- C++ -*- complex number classes.

// Copyright (C) 1997-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file include/complex
 *  This is a Standard C++ Library header.
 */

//
// ISO C++ 14882: 26.2  Complex Numbers
// Note: this is not a conforming implementation.
// Initially implemented by Ulrich Drepper <drepper@cygnus.com>
// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>
//

#ifndef _GLIBCXX_COMPLEX
#define _GLIBCXX_COMPLEX 1

#pragma GCC system_header

#include <bits/c++config.h>
#include <bits/cpp_type_traits.h>
#include <ext/type_traits.h>
#include <cmath>
#include <sstream>

// Get rid of a macro possibly defined in <complex.h>
#undef complex

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   * @defgroup complex_numbers Complex Numbers
   * @ingroup numerics
   *
   * Classes and functions for complex numbers.
   * @{
   */

  // Forward declarations.
  template<typename _Tp> class complex;
  template<> class complex<float>;
  template<> class complex<double>;
  template<> class complex<long double>;

  ///  Return magnitude of @a z.
  template<typename _Tp> _Tp abs(const complex<_Tp>&);
  ///  Return phase angle of @a z.
  template<typename _Tp> _Tp arg(const complex<_Tp>&);
  ///  Return @a z magnitude squared.
  template<typename _Tp> _Tp norm(const complex<_Tp>&);

  ///  Return complex conjugate of @a z.
  template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&);
  ///  Return complex with magnitude @a rho and angle @a theta.
  template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0);

  // Transcendentals:
  /// Return complex cosine of @a z.
  template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&);
  /// Return complex hyperbolic cosine of @a z.
  template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&);
  /// Return complex base e exponential of @a z.
  template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&);
  /// Return complex natural logarithm of @a z.
  template<typename _Tp> complex<_Tp> log(const complex<_Tp>&);
  /// Return complex base 10 logarithm of @a z.
  template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&);
#if __cplusplus < 201103L
  // DR 844.
  /// Return @a x to the @a y'th power.
  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int);
#endif
  /// Return @a x to the @a y'th power.
  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&);
  /// Return @a x to the @a y'th power.
  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, 
                                          const complex<_Tp>&);
  /// Return @a x to the @a y'th power.
  template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);
  /// Return complex sine of @a z.
  template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&);
  /// Return complex hyperbolic sine of @a z.
  template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&);
  /// Return complex square root of @a z.
  template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&);
  /// Return complex tangent of @a z.
  template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&);
  /// Return complex hyperbolic tangent of @a z.
  template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&);
    
    
  // 26.2.2  Primary template class complex
  /**
   *  Template to represent complex numbers.
   *
   *  Specializations for float, double, and long double are part of the
   *  library.  Results with any other type are not guaranteed.
   *
   *  @param  Tp  Type of real and imaginary values.
  */
  template<typename _Tp>
    struct complex
    {
      /// Value typedef.
      typedef _Tp value_type;
      
      ///  Default constructor.  First parameter is x, second parameter is y.
      ///  Unspecified parameters default to 0.
      _GLIBCXX_CONSTEXPR complex(const _Tp& __r = _Tp(), const _Tp& __i = _Tp())
      : _M_real(__r), _M_imag(__i) { }

      // Lets the compiler synthesize the copy constructor   
      // complex (const complex<_Tp>&);
      ///  Copy constructor.
      template<typename _Up>
        _GLIBCXX_CONSTEXPR complex(const complex<_Up>& __z)
	: _M_real(__z.real()), _M_imag(__z.imag()) { }

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      _GLIBCXX_ABI_TAG_CXX11
      constexpr _Tp 
      real() { return _M_real; }

      _GLIBCXX_ABI_TAG_CXX11
      constexpr _Tp 
      imag() { return _M_imag; }
#else
      ///  Return real part of complex number.
      _Tp& 
      real() { return _M_real; }

      ///  Return real part of complex number.
      const _Tp& 
      real() const { return _M_real; }

      ///  Return imaginary part of complex number.
      _Tp& 
      imag() { return _M_imag; }

      ///  Return imaginary part of complex number.
      const _Tp& 
      imag() const { return _M_imag; }
#endif

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      void 
      real(_Tp __val) { _M_real = __val; }

      void 
      imag(_Tp __val) { _M_imag = __val; }

      /// Assign this complex number to scalar @a t.
      complex<_Tp>& operator=(const _Tp&);
      
      /// Add @a t to this complex number.
      // 26.2.5/1
      complex<_Tp>&
      operator+=(const _Tp& __t)
      {
	_M_real += __t;
	return *this;
      }

      /// Subtract @a t from this complex number.
      // 26.2.5/3
      complex<_Tp>&
      operator-=(const _Tp& __t)
      {
	_M_real -= __t;
	return *this;
      }

      /// Multiply this complex number by @a t.
      complex<_Tp>& operator*=(const _Tp&);
      /// Divide this complex number by @a t.
      complex<_Tp>& operator/=(const _Tp&);

      // Lets the compiler synthesize the
      // copy and assignment operator
      // complex<_Tp>& operator= (const complex<_Tp>&);
      /// Assign this complex number to complex @a z.
      template<typename _Up>
        complex<_Tp>& operator=(const complex<_Up>&);
      /// Add @a z to this complex number.
      template<typename _Up>
        complex<_Tp>& operator+=(const complex<_Up>&);
      /// Subtract @a z from this complex number.
      template<typename _Up>
        complex<_Tp>& operator-=(const complex<_Up>&);
      /// Multiply this complex number by @a z.
      template<typename _Up>
        complex<_Tp>& operator*=(const complex<_Up>&);
      /// Divide this complex number by @a z.
      template<typename _Up>
        complex<_Tp>& operator/=(const complex<_Up>&);

      _GLIBCXX_USE_CONSTEXPR complex __rep() const
      { return *this; }

    private:
      _Tp _M_real;
      _Tp _M_imag;
    };

  template<typename _Tp>
    complex<_Tp>&
    complex<_Tp>::operator=(const _Tp& __t)
    {
     _M_real = __t;
     _M_imag = _Tp();
     return *this;
    } 

  // 26.2.5/5
  template<typename _Tp>
    complex<_Tp>&
    complex<_Tp>::operator*=(const _Tp& __t)
    {
      _M_real *= __t;
      _M_imag *= __t;
      return *this;
    }

  // 26.2.5/7
  template<typename _Tp>
    complex<_Tp>&
    complex<_Tp>::operator/=(const _Tp& __t)
    {
      _M_real /= __t;
      _M_imag /= __t;
      return *this;
    }

  template<typename _Tp>
    template<typename _Up>
    complex<_Tp>&
    complex<_Tp>::operator=(const complex<_Up>& __z)
    {
      _M_real = __z.real();
      _M_imag = __z.imag();
      return *this;
    }

  // 26.2.5/9
  template<typename _Tp>
    template<typename _Up>
    complex<_Tp>&
    complex<_Tp>::operator+=(const complex<_Up>& __z)
    {
      _M_real += __z.real();
      _M_imag += __z.imag();
      return *this;
    }

  // 26.2.5/11
  template<typename _Tp>
    template<typename _Up>
    complex<_Tp>&
    complex<_Tp>::operator-=(const complex<_Up>& __z)
    {
      _M_real -= __z.real();
      _M_imag -= __z.imag();
      return *this;
    }

  // 26.2.5/13
  // XXX: This is a grammar school implementation.
  template<typename _Tp>
    template<typename _Up>
    complex<_Tp>&
    complex<_Tp>::operator*=(const complex<_Up>& __z)
    {
      const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag();
      _M_imag = _M_real * __z.imag() + _M_imag * __z.real();
      _M_real = __r;
      return *this;
    }

  // 26.2.5/15
  // XXX: This is a grammar school implementation.
  template<typename _Tp>
    template<typename _Up>
    complex<_Tp>&
    complex<_Tp>::operator/=(const complex<_Up>& __z)
    {
      const _Tp __r =  _M_real * __z.real() + _M_imag * __z.imag();
      const _Tp __n = std::norm(__z);
      _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n;
      _M_real = __r / __n;
      return *this;
    }
    
  // Operators:
  //@{
  ///  Return new complex value @a x plus @a y.
  template<typename _Tp>
    inline complex<_Tp>
    operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __x;
      __r += __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator+(const complex<_Tp>& __x, const _Tp& __y)
    {
      complex<_Tp> __r = __x;
      __r += __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator+(const _Tp& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __y;
      __r += __x;
      return __r;
    }
  //@}

  //@{
  ///  Return new complex value @a x minus @a y.
  template<typename _Tp>
    inline complex<_Tp>
    operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __x;
      __r -= __y;
      return __r;
    }
    
  template<typename _Tp>
    inline complex<_Tp>
    operator-(const complex<_Tp>& __x, const _Tp& __y)
    {
      complex<_Tp> __r = __x;
      __r -= __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator-(const _Tp& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r(__x, -__y.imag());
      __r -= __y.real();
      return __r;
    }
  //@}

  //@{
  ///  Return new complex value @a x times @a y.
  template<typename _Tp>
    inline complex<_Tp>
    operator*(const complex<_Tp>& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __x;
      __r *= __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator*(const complex<_Tp>& __x, const _Tp& __y)
    {
      complex<_Tp> __r = __x;
      __r *= __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator*(const _Tp& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __y;
      __r *= __x;
      return __r;
    }
  //@}

  //@{
  ///  Return new complex value @a x divided by @a y.
  template<typename _Tp>
    inline complex<_Tp>
    operator/(const complex<_Tp>& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __x;
      __r /= __y;
      return __r;
    }
    
  template<typename _Tp>
    inline complex<_Tp>
    operator/(const complex<_Tp>& __x, const _Tp& __y)
    {
      complex<_Tp> __r = __x;
      __r /= __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator/(const _Tp& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __x;
      __r /= __y;
      return __r;
    }
  //@}

  ///  Return @a x.
  template<typename _Tp>
    inline complex<_Tp>
    operator+(const complex<_Tp>& __x)
    { return __x; }

  ///  Return complex negation of @a x.
  template<typename _Tp>
    inline complex<_Tp>
    operator-(const complex<_Tp>& __x)
    {  return complex<_Tp>(-__x.real(), -__x.imag()); }

  //@{
  ///  Return true if @a x is equal to @a y.
  template<typename _Tp>
    inline _GLIBCXX_CONSTEXPR bool
    operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)
    { return __x.real() == __y.real() && __x.imag() == __y.imag(); }

  template<typename _Tp>
    inline _GLIBCXX_CONSTEXPR bool
    operator==(const complex<_Tp>& __x, const _Tp& __y)
    { return __x.real() == __y && __x.imag() == _Tp(); }

  template<typename _Tp>
    inline _GLIBCXX_CONSTEXPR bool
    operator==(const _Tp& __x, const complex<_Tp>& __y)
    { return __x == __y.real() && _Tp() == __y.imag(); }
  //@}

  //@{
  ///  Return false if @a x is equal to @a y.
  template<typename _Tp>
    inline _GLIBCXX_CONSTEXPR bool
    operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)
    { return __x.real() != __y.real() || __x.imag() != __y.imag(); }

  template<typename _Tp>
    inline _GLIBCXX_CONSTEXPR bool
    operator!=(const complex<_Tp>& __x, const _Tp& __y)
    { return __x.real() != __y || __x.imag() != _Tp(); }

  template<typename _Tp>
    inline _GLIBCXX_CONSTEXPR bool
    operator!=(const _Tp& __x, const complex<_Tp>& __y)
    { return __x != __y.real() || _Tp() != __y.imag(); }
  //@}

  ///  Extraction operator for complex values.
  template<typename _Tp, typename _CharT, class _Traits>
    basic_istream<_CharT, _Traits>&
    operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x)
    {
      _Tp __re_x, __im_x;
      _CharT __ch;
      __is >> __ch;
      if (__ch == '(') 
	{
	  __is >> __re_x >> __ch;
	  if (__ch == ',') 
	    {
	      __is >> __im_x >> __ch;
	      if (__ch == ')') 
		__x = complex<_Tp>(__re_x, __im_x);
	      else
		__is.setstate(ios_base::failbit);
	    }
	  else if (__ch == ')') 
	    __x = __re_x;
	  else
	    __is.setstate(ios_base::failbit);
	}
      else 
	{
	  __is.putback(__ch);
	  __is >> __re_x;
	  __x = __re_x;
	}
      return __is;
    }

  ///  Insertion operator for complex values.
  template<typename _Tp, typename _CharT, class _Traits>
    basic_ostream<_CharT, _Traits>&
    operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)
    {
      basic_ostringstream<_CharT, _Traits> __s;
      __s.flags(__os.flags());
      __s.imbue(__os.getloc());
      __s.precision(__os.precision());
      __s << '(' << __x.real() << ',' << __x.imag() << ')';
      return __os << __s.str();
    }

  // Values
#if __cplusplus >= 201103L
  template<typename _Tp>
    constexpr _Tp
    real(const complex<_Tp>& __z)
    { return __z.real(); }

  template<typename _Tp>
    constexpr _Tp
    imag(const complex<_Tp>& __z)
    { return __z.imag(); }
#else
  template<typename _Tp>
    inline _Tp&
    real(complex<_Tp>& __z)
    { return __z.real(); }
    
  template<typename _Tp>
    inline const _Tp&
    real(const complex<_Tp>& __z)
    { return __z.real(); }
    
  template<typename _Tp>
    inline _Tp&
    imag(complex<_Tp>& __z)
    { return __z.imag(); }
    
  template<typename _Tp>
    inline const _Tp&
    imag(const complex<_Tp>& __z)
    { return __z.imag(); }
#endif

  // 26.2.7/3 abs(__z):  Returns the magnitude of __z.
  template<typename _Tp>
    inline _Tp
    __complex_abs(const complex<_Tp>& __z)
    {
      _Tp __x = __z.real();
      _Tp __y = __z.imag();
      const _Tp __s = std::max(abs(__x), abs(__y));
      if (__s == _Tp())  // well ...
        return __s;
      __x /= __s; 
      __y /= __s;
      return __s * sqrt(__x * __x + __y * __y);
    }

#if _GLIBCXX_USE_C99_COMPLEX
  inline float
  __complex_abs(__complex__ float __z) { return __builtin_cabsf(__z); }

  inline double
  __complex_abs(__complex__ double __z) { return __builtin_cabs(__z); }

  inline long double
  __complex_abs(const __complex__ long double& __z)
  { return __builtin_cabsl(__z); }

  template<typename _Tp>
    inline _Tp
    abs(const complex<_Tp>& __z) { return __complex_abs(__z.__rep()); }
#else
  template<typename _Tp>
    inline _Tp
    abs(const complex<_Tp>& __z) { return __complex_abs(__z); }
#endif  


  // 26.2.7/4: arg(__z): Returns the phase angle of __z.
  template<typename _Tp>
    inline _Tp
    __complex_arg(const complex<_Tp>& __z)
    { return  atan2(__z.imag(), __z.real()); }

#if _GLIBCXX_USE_C99_COMPLEX
  inline float
  __complex_arg(__complex__ float __z) { return __builtin_cargf(__z); }

  inline double
  __complex_arg(__complex__ double __z) { return __builtin_carg(__z); }

  inline long double
  __complex_arg(const __complex__ long double& __z)
  { return __builtin_cargl(__z); }

  template<typename _Tp>
    inline _Tp
    arg(const complex<_Tp>& __z) { return __complex_arg(__z.__rep()); }
#else
  template<typename _Tp>
    inline _Tp
    arg(const complex<_Tp>& __z) { return __complex_arg(__z); }
#endif

  // 26.2.7/5: norm(__z) returns the squared magnitude of __z.
  //     As defined, norm() is -not- a norm is the common mathematical
  //     sens used in numerics.  The helper class _Norm_helper<> tries to
  //     distinguish between builtin floating point and the rest, so as
  //     to deliver an answer as close as possible to the real value.
  template<bool>
    struct _Norm_helper
    {
      template<typename _Tp>
        static inline _Tp _S_do_it(const complex<_Tp>& __z)
        {
          const _Tp __x = __z.real();
          const _Tp __y = __z.imag();
          return __x * __x + __y * __y;
        }
    };

  template<>
    struct _Norm_helper<true>
    {
      template<typename _Tp>
        static inline _Tp _S_do_it(const complex<_Tp>& __z)
        {
          _Tp __res = std::abs(__z);
          return __res * __res;
        }
    };
  
  template<typename _Tp>
    inline _Tp
    norm(const complex<_Tp>& __z)
    {
      return _Norm_helper<__is_floating<_Tp>::__value 
	&& !_GLIBCXX_FAST_MATH>::_S_do_it(__z);
    }

  template<typename _Tp>
    inline complex<_Tp>
    polar(const _Tp& __rho, const _Tp& __theta)
    { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); }

  template<typename _Tp>
    inline complex<_Tp>
    conj(const complex<_Tp>& __z)
    { return complex<_Tp>(__z.real(), -__z.imag()); }
  
  // Transcendentals

  // 26.2.8/1 cos(__z):  Returns the cosine of __z.
  template<typename _Tp>
    inline complex<_Tp>
    __complex_cos(const complex<_Tp>& __z)
    {
      const _Tp __x = __z.real();
      const _Tp __y = __z.imag();
      return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));
    }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_cos(__complex__ float __z) { return __builtin_ccosf(__z); }

  inline __complex__ double
  __complex_cos(__complex__ double __z) { return __builtin_ccos(__z); }

  inline __complex__ long double
  __complex_cos(const __complex__ long double& __z)
  { return __builtin_ccosl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    cos(const complex<_Tp>& __z) { return __complex_cos(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    cos(const complex<_Tp>& __z) { return __complex_cos(__z); }
#endif

  // 26.2.8/2 cosh(__z): Returns the hyperbolic cosine of __z.
  template<typename _Tp>
    inline complex<_Tp>
    __complex_cosh(const complex<_Tp>& __z)
    {
      const _Tp __x = __z.real();
      const _Tp __y = __z.imag();
      return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));
    }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_cosh(__complex__ float __z) { return __builtin_ccoshf(__z); }

  inline __complex__ double
  __complex_cosh(__complex__ double __z) { return __builtin_ccosh(__z); }

  inline __complex__ long double
  __complex_cosh(const __complex__ long double& __z)
  { return __builtin_ccoshl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    cosh(const complex<_Tp>& __z) { return __complex_cosh(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    cosh(const complex<_Tp>& __z) { return __complex_cosh(__z); }
#endif

  // 26.2.8/3 exp(__z): Returns the complex base e exponential of x
  template<typename _Tp>
    inline complex<_Tp>
    __complex_exp(const complex<_Tp>& __z)
    { return std::polar(exp(__z.real()), __z.imag()); }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_exp(__complex__ float __z) { return __builtin_cexpf(__z); }

  inline __complex__ double
  __complex_exp(__complex__ double __z) { return __builtin_cexp(__z); }

  inline __complex__ long double
  __complex_exp(const __complex__ long double& __z)
  { return __builtin_cexpl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    exp(const complex<_Tp>& __z) { return __complex_exp(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    exp(const complex<_Tp>& __z) { return __complex_exp(__z); }
#endif

  // 26.2.8/5 log(__z): Returns the natural complex logarithm of __z.
  //                    The branch cut is along the negative axis.
  template<typename _Tp>
    inline complex<_Tp>
    __complex_log(const complex<_Tp>& __z)
    { return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_log(__complex__ float __z) { return __builtin_clogf(__z); }

  inline __complex__ double
  __complex_log(__complex__ double __z) { return __builtin_clog(__z); }

  inline __complex__ long double
  __complex_log(const __complex__ long double& __z)
  { return __builtin_clogl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    log(const complex<_Tp>& __z) { return __complex_log(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    log(const complex<_Tp>& __z) { return __complex_log(__z); }
#endif

  template<typename _Tp>
    inline complex<_Tp>
    log10(const complex<_Tp>& __z)
    { return std::log(__z) / log(_Tp(10.0)); }

  // 26.2.8/10 sin(__z): Returns the sine of __z.
  template<typename _Tp>
    inline complex<_Tp>
    __complex_sin(const complex<_Tp>& __z)
    {
      const _Tp __x = __z.real();
      const _Tp __y = __z.imag();
      return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y)); 
    }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_sin(__complex__ float __z) { return __builtin_csinf(__z); }

  inline __complex__ double
  __complex_sin(__complex__ double __z) { return __builtin_csin(__z); }

  inline __complex__ long double
  __complex_sin(const __complex__ long double& __z)
  { return __builtin_csinl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    sin(const complex<_Tp>& __z) { return __complex_sin(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    sin(const complex<_Tp>& __z) { return __complex_sin(__z); }
#endif

  // 26.2.8/11 sinh(__z): Returns the hyperbolic sine of __z.
  template<typename _Tp>
    inline complex<_Tp>
    __complex_sinh(const complex<_Tp>& __z)
    {
      const _Tp __x = __z.real();
      const _Tp  __y = __z.imag();
      return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));
    }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_sinh(__complex__ float __z) { return __builtin_csinhf(__z); }      

  inline __complex__ double
  __complex_sinh(__complex__ double __z) { return __builtin_csinh(__z); }      

  inline __complex__ long double
  __complex_sinh(const __complex__ long double& __z)
  { return __builtin_csinhl(__z); }      

  template<typename _Tp>
    inline complex<_Tp>
    sinh(const complex<_Tp>& __z) { return __complex_sinh(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    sinh(const complex<_Tp>& __z) { return __complex_sinh(__z); }
#endif

  // 26.2.8/13 sqrt(__z): Returns the complex square root of __z.
  //                     The branch cut is on the negative axis.
  template<typename _Tp>
    complex<_Tp>
    __complex_sqrt(const complex<_Tp>& __z)
    {
      _Tp __x = __z.real();
      _Tp __y = __z.imag();

      if (__x == _Tp())
        {
          _Tp __t = sqrt(abs(__y) / 2);
          return complex<_Tp>(__t, __y < _Tp() ? -__t : __t);
        }
      else
        {
          _Tp __t = sqrt(2 * (std::abs(__z) + abs(__x)));
          _Tp __u = __t / 2;
          return __x > _Tp()
            ? complex<_Tp>(__u, __y / __t)
            : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u);
        }
    }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_sqrt(__complex__ float __z) { return __builtin_csqrtf(__z); }

  inline __complex__ double
  __complex_sqrt(__complex__ double __z) { return __builtin_csqrt(__z); }

  inline __complex__ long double
  __complex_sqrt(const __complex__ long double& __z)
  { return __builtin_csqrtl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    sqrt(const complex<_Tp>& __z) { return __complex_sqrt(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    sqrt(const complex<_Tp>& __z) { return __complex_sqrt(__z); }
#endif

  // 26.2.8/14 tan(__z):  Return the complex tangent of __z.
  
  template<typename _Tp>
    inline complex<_Tp>
    __complex_tan(const complex<_Tp>& __z)
    { return std::sin(__z) / std::cos(__z); }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_tan(__complex__ float __z) { return __builtin_ctanf(__z); }

  inline __complex__ double
  __complex_tan(__complex__ double __z) { return __builtin_ctan(__z); }

  inline __complex__ long double
  __complex_tan(const __complex__ long double& __z)
  { return __builtin_ctanl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    tan(const complex<_Tp>& __z) { return __complex_tan(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    tan(const complex<_Tp>& __z) { return __complex_tan(__z); }
#endif


  // 26.2.8/15 tanh(__z):  Returns the hyperbolic tangent of __z.
  
  template<typename _Tp>
    inline complex<_Tp>
    __complex_tanh(const complex<_Tp>& __z)
    { return std::sinh(__z) / std::cosh(__z); }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_tanh(__complex__ float __z) { return __builtin_ctanhf(__z); }

  inline __complex__ double
  __complex_tanh(__complex__ double __z) { return __builtin_ctanh(__z); }

  inline __complex__ long double
  __complex_tanh(const __complex__ long double& __z)
  { return __builtin_ctanhl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    tanh(const complex<_Tp>& __z) { return __complex_tanh(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    tanh(const complex<_Tp>& __z) { return __complex_tanh(__z); }
#endif


  // 26.2.8/9  pow(__x, __y): Returns the complex power base of __x
  //                          raised to the __y-th power.  The branch
  //                          cut is on the negative axis.
#if __cplusplus < 201103L
  template<typename _Tp>
    complex<_Tp>
    __complex_pow_unsigned(complex<_Tp> __x, unsigned __n)
    {
      complex<_Tp> __y = __n % 2 ? __x : complex<_Tp>(1);

      while (__n >>= 1)
        {
          __x *= __x;
          if (__n % 2)
            __y *= __x;
        }

      return __y;
    }

  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // DR 844. complex pow return type is ambiguous.
  template<typename _Tp>
    inline complex<_Tp>
    pow(const complex<_Tp>& __z, int __n)
    {
      return __n < 0
	? complex<_Tp>(1) / std::__complex_pow_unsigned(__z, -(unsigned)__n)
        : std::__complex_pow_unsigned(__z, __n);
    }
#endif

  template<typename _Tp>
    complex<_Tp>
    pow(const complex<_Tp>& __x, const _Tp& __y)
    {
#ifndef _GLIBCXX_USE_C99_COMPLEX
      if (__x == _Tp())
	return _Tp();
#endif
      if (__x.imag() == _Tp() && __x.real() > _Tp())
        return pow(__x.real(), __y);

      complex<_Tp> __t = std::log(__x);
      return std::polar(exp(__y * __t.real()), __y * __t.imag());
    }

  template<typename _Tp>
    inline complex<_Tp>
    __complex_pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
    { return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x)); }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_pow(__complex__ float __x, __complex__ float __y)
  { return __builtin_cpowf(__x, __y); }

  inline __complex__ double
  __complex_pow(__complex__ double __x, __complex__ double __y)
  { return __builtin_cpow(__x, __y); }

  inline __complex__ long double
  __complex_pow(const __complex__ long double& __x,
		const __complex__ long double& __y)
  { return __builtin_cpowl(__x, __y); }

  template<typename _Tp>
    inline complex<_Tp>
    pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
    { return __complex_pow(__x.__rep(), __y.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
    { return __complex_pow(__x, __y); }
#endif

  template<typename _Tp>
    inline complex<_Tp>
    pow(const _Tp& __x, const complex<_Tp>& __y)
    {
      return __x > _Tp() ? std::polar(pow(__x, __y.real()),
				      __y.imag() * log(__x))
	                 : std::pow(complex<_Tp>(__x), __y);
    }

  /// 26.2.3  complex specializations
  /// complex<float> specialization
  template<>
    struct complex<float>
    {
      typedef float value_type;
      typedef __complex__ float _ComplexT;

      _GLIBCXX_CONSTEXPR complex(_ComplexT __z) : _M_value(__z) { }

      _GLIBCXX_CONSTEXPR complex(float __r = 0.0f, float __i = 0.0f)
#if __cplusplus >= 201103L
      : _M_value{ __r, __i } { }
#else
      {
	__real__ _M_value = __r;
	__imag__ _M_value = __i;
      }
#endif

      explicit _GLIBCXX_CONSTEXPR complex(const complex<double>&);
      explicit _GLIBCXX_CONSTEXPR complex(const complex<long double>&);	

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      __attribute ((__abi_tag__ ("cxx11")))
      constexpr float 
      real() { return __real__ _M_value; }

      __attribute ((__abi_tag__ ("cxx11")))
      constexpr float 
      imag() { return __imag__ _M_value; }
#else
      float& 
      real() { return __real__ _M_value; }

      const float& 
      real() const { return __real__ _M_value; }      

      float& 
      imag() { return __imag__ _M_value; }

      const float& 
      imag() const { return __imag__ _M_value; }
#endif

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      void 
      real(float __val) { __real__ _M_value = __val; }

      void 
      imag(float __val) { __imag__ _M_value = __val; }

      complex&
      operator=(float __f)
      {
	_M_value = __f;
	return *this;
      }

      complex&
      operator+=(float __f)
      {
	_M_value += __f;
	return *this;
      }

      complex&
      operator-=(float __f)
      {
	_M_value -= __f;
	return *this;
      }

      complex&
      operator*=(float __f)
      {
	_M_value *= __f;
	return *this;
      }

      complex&
      operator/=(float __f)
      {
	_M_value /= __f;
	return *this;
      }

      // Let the compiler synthesize the copy and assignment
      // operator.  It always does a pretty good job.
      // complex& operator=(const complex&);

      template<typename _Tp>
        complex&
        operator=(const complex<_Tp>&  __z)
	{
	  __real__ _M_value = __z.real();
	  __imag__ _M_value = __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
        operator+=(const complex<_Tp>& __z)
	{
	  __real__ _M_value += __z.real();
	  __imag__ _M_value += __z.imag();
	  return *this;
	}

      template<class _Tp>
        complex&
        operator-=(const complex<_Tp>& __z)
	{
	  __real__ _M_value -= __z.real();
	  __imag__ _M_value -= __z.imag();
	  return *this;
	}

      template<class _Tp>
        complex&
        operator*=(const complex<_Tp>& __z)
	{
	  _ComplexT __t;
	  __real__ __t = __z.real();
	  __imag__ __t = __z.imag();
	  _M_value *= __t;
	  return *this;
	}

      template<class _Tp>
        complex&
        operator/=(const complex<_Tp>& __z)
	{
	  _ComplexT __t;
	  __real__ __t = __z.real();
	  __imag__ __t = __z.imag();
	  _M_value /= __t;
	  return *this;
	}

      _GLIBCXX_USE_CONSTEXPR _ComplexT __rep() const { return _M_value; }

    private:
      _ComplexT _M_value;
    };

  /// 26.2.3  complex specializations
  /// complex<double> specialization
  template<>
    struct complex<double>
    {
      typedef double value_type;
      typedef __complex__ double _ComplexT;

      _GLIBCXX_CONSTEXPR complex(_ComplexT __z) : _M_value(__z) { }

      _GLIBCXX_CONSTEXPR complex(double __r = 0.0, double __i = 0.0)
#if __cplusplus >= 201103L
      : _M_value{ __r, __i } { }
#else
      {
	__real__ _M_value = __r;
	__imag__ _M_value = __i;
      }
#endif

      _GLIBCXX_CONSTEXPR complex(const complex<float>& __z)
      : _M_value(__z.__rep()) { }

      explicit _GLIBCXX_CONSTEXPR complex(const complex<long double>&);	

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      __attribute ((__abi_tag__ ("cxx11")))
      constexpr double 
      real() { return __real__ _M_value; }

      __attribute ((__abi_tag__ ("cxx11")))
      constexpr double 
      imag() { return __imag__ _M_value; }
#else
      double& 
      real() { return __real__ _M_value; }

      const double& 
      real() const { return __real__ _M_value; }

      double& 
      imag() { return __imag__ _M_value; }

      const double& 
      imag() const { return __imag__ _M_value; }
#endif

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      void 
      real(double __val) { __real__ _M_value = __val; }

      void 
      imag(double __val) { __imag__ _M_value = __val; }

      complex&
      operator=(double __d)
      {
	_M_value = __d;
	return *this;
      }

      complex&
      operator+=(double __d)
      {
	_M_value += __d;
	return *this;
      }
	
      complex&
      operator-=(double __d)
      {
	_M_value -= __d;
	return *this;
      }

      complex&
      operator*=(double __d)
      {
	_M_value *= __d;
	return *this;
      }

      complex&
      operator/=(double __d)
      {
	_M_value /= __d;
	return *this;
      }

      // The compiler will synthesize this, efficiently.
      // complex& operator=(const complex&);

      template<typename _Tp>
        complex&
        operator=(const complex<_Tp>& __z)
	{
	  __real__ _M_value = __z.real();
	  __imag__ _M_value = __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
        operator+=(const complex<_Tp>& __z)
	{
	  __real__ _M_value += __z.real();
	  __imag__ _M_value += __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
        operator-=(const complex<_Tp>& __z)
	{
	  __real__ _M_value -= __z.real();
	  __imag__ _M_value -= __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
        operator*=(const complex<_Tp>& __z)
	{
	  _ComplexT __t;
	  __real__ __t = __z.real();
	  __imag__ __t = __z.imag();
	  _M_value *= __t;
	  return *this;
	}

      template<typename _Tp>
        complex&
        operator/=(const complex<_Tp>& __z)
	{
	  _ComplexT __t;
	  __real__ __t = __z.real();
	  __imag__ __t = __z.imag();
	  _M_value /= __t;
	  return *this;
	}

      _GLIBCXX_USE_CONSTEXPR _ComplexT __rep() const { return _M_value; }

    private:
      _ComplexT _M_value;
    };

  /// 26.2.3  complex specializations
  /// complex<long double> specialization
  template<>
    struct complex<long double>
    {
      typedef long double value_type;
      typedef __complex__ long double _ComplexT;

      _GLIBCXX_CONSTEXPR complex(_ComplexT __z) : _M_value(__z) { }

      _GLIBCXX_CONSTEXPR complex(long double __r = 0.0L, 
				 long double __i = 0.0L)
#if __cplusplus >= 201103L
      : _M_value{ __r, __i } { }
#else
      {
	__real__ _M_value = __r;
	__imag__ _M_value = __i;
      }
#endif

      _GLIBCXX_CONSTEXPR complex(const complex<float>& __z)
      : _M_value(__z.__rep()) { }

      _GLIBCXX_CONSTEXPR complex(const complex<double>& __z)
      : _M_value(__z.__rep()) { }

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      __attribute ((__abi_tag__ ("cxx11")))
      constexpr long double 
      real() { return __real__ _M_value; }

      __attribute ((__abi_tag__ ("cxx11")))
      constexpr long double 
      imag() { return __imag__ _M_value; }
#else
      long double& 
      real() { return __real__ _M_value; }

      const long double& 
      real() const { return __real__ _M_value; }

      long double& 
      imag() { return __imag__ _M_value; }

      const long double& 
      imag() const { return __imag__ _M_value; }
#endif

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      void 
      real(long double __val) { __real__ _M_value = __val; }

      void 
      imag(long double __val) { __imag__ _M_value = __val; }

      complex&
      operator=(long double __r)
      {
	_M_value = __r;
	return *this;
      }

      complex&
      operator+=(long double __r)
      {
	_M_value += __r;
	return *this;
      }

      complex&
      operator-=(long double __r)
      {
	_M_value -= __r;
	return *this;
      }

      complex&
      operator*=(long double __r)
      {
	_M_value *= __r;
	return *this;
      }

      complex&
      operator/=(long double __r)
      {
	_M_value /= __r;
	return *this;
      }

      // The compiler knows how to do this efficiently
      // complex& operator=(const complex&);

      template<typename _Tp>
        complex&
        operator=(const complex<_Tp>& __z)
	{
	  __real__ _M_value = __z.real();
	  __imag__ _M_value = __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
	operator+=(const complex<_Tp>& __z)
	{
	  __real__ _M_value += __z.real();
	  __imag__ _M_value += __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
	operator-=(const complex<_Tp>& __z)
	{
	  __real__ _M_value -= __z.real();
	  __imag__ _M_value -= __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
	operator*=(const complex<_Tp>& __z)
	{
	  _ComplexT __t;
	  __real__ __t = __z.real();
	  __imag__ __t = __z.imag();
	  _M_value *= __t;
	  return *this;
	}

      template<typename _Tp>
        complex&
	operator/=(const complex<_Tp>& __z)
	{
	  _ComplexT __t;
	  __real__ __t = __z.real();
	  __imag__ __t = __z.imag();
	  _M_value /= __t;
	  return *this;
	}

      _GLIBCXX_USE_CONSTEXPR _ComplexT __rep() const { return _M_value; }

    private:
      _ComplexT _M_value;
    };

  // These bits have to be at the end of this file, so that the
  // specializations have all been defined.
  inline _GLIBCXX_CONSTEXPR
  complex<float>::complex(const complex<double>& __z)
  : _M_value(__z.__rep()) { }

  inline _GLIBCXX_CONSTEXPR
  complex<float>::complex(const complex<long double>& __z)
  : _M_value(__z.__rep()) { }

  inline _GLIBCXX_CONSTEXPR
  complex<double>::complex(const complex<long double>& __z)
  : _M_value(__z.__rep()) { }

  // Inhibit implicit instantiations for required instantiations,
  // which are defined via explicit instantiations elsewhere.
  // NB:  This syntax is a GNU extension.
#if _GLIBCXX_EXTERN_TEMPLATE
  extern template istream& operator>>(istream&, complex<float>&);
  extern template ostream& operator<<(ostream&, const complex<float>&);
  extern template istream& operator>>(istream&, complex<double>&);
  extern template ostream& operator<<(ostream&, const complex<double>&);
  extern template istream& operator>>(istream&, complex<long double>&);
  extern template ostream& operator<<(ostream&, const complex<long double>&);

#ifdef _GLIBCXX_USE_WCHAR_T
  extern template wistream& operator>>(wistream&, complex<float>&);
  extern template wostream& operator<<(wostream&, const complex<float>&);
  extern template wistream& operator>>(wistream&, complex<double>&);
  extern template wostream& operator<<(wostream&, const complex<double>&);
  extern template wistream& operator>>(wistream&, complex<long double>&);
  extern template wostream& operator<<(wostream&, const complex<long double>&);
#endif
#endif

  // @} group complex_numbers

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace

namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  // See ext/type_traits.h for the primary template.
  template<typename _Tp, typename _Up>
    struct __promote_2<std::complex<_Tp>, _Up>
    {
    public:
      typedef std::complex<typename __promote_2<_Tp, _Up>::__type> __type;
    };

  template<typename _Tp, typename _Up>
    struct __promote_2<_Tp, std::complex<_Up> >
    {
    public:
      typedef std::complex<typename __promote_2<_Tp, _Up>::__type> __type;
    };
  
  template<typename _Tp, typename _Up>
    struct __promote_2<std::complex<_Tp>, std::complex<_Up> >
    {
    public:
      typedef std::complex<typename __promote_2<_Tp, _Up>::__type> __type;
    };

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace

#if __cplusplus >= 201103L

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  // Forward declarations.
  template<typename _Tp> std::complex<_Tp> acos(const std::complex<_Tp>&);
  template<typename _Tp> std::complex<_Tp> asin(const std::complex<_Tp>&);
  template<typename _Tp> std::complex<_Tp> atan(const std::complex<_Tp>&);

  template<typename _Tp> std::complex<_Tp> acosh(const std::complex<_Tp>&);
  template<typename _Tp> std::complex<_Tp> asinh(const std::complex<_Tp>&);
  template<typename _Tp> std::complex<_Tp> atanh(const std::complex<_Tp>&);
  // DR 595.
  template<typename _Tp> _Tp               fabs(const std::complex<_Tp>&);

  template<typename _Tp>
    inline std::complex<_Tp>
    __complex_acos(const std::complex<_Tp>& __z)
    {
      const std::complex<_Tp> __t = std::asin(__z);
      const _Tp __pi_2 = 1.5707963267948966192313216916397514L;
      return std::complex<_Tp>(__pi_2 - __t.real(), -__t.imag());
    }

#if _GLIBCXX_USE_C99_COMPLEX_TR1
  inline __complex__ float
  __complex_acos(__complex__ float __z)
  { return __builtin_cacosf(__z); }

  inline __complex__ double
  __complex_acos(__complex__ double __z)
  { return __builtin_cacos(__z); }

  inline __complex__ long double
  __complex_acos(const __complex__ long double& __z)
  { return __builtin_cacosl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    acos(const std::complex<_Tp>& __z)
    { return __complex_acos(__z.__rep()); }
#else
  /// acos(__z) [8.1.2].
  //  Effects:  Behaves the same as C99 function cacos, defined
  //            in subclause 7.3.5.1.
  template<typename _Tp>
    inline std::complex<_Tp>
    acos(const std::complex<_Tp>& __z)
    { return __complex_acos(__z); }
#endif

  template<typename _Tp>
    inline std::complex<_Tp>
    __complex_asin(const std::complex<_Tp>& __z)
    {
      std::complex<_Tp> __t(-__z.imag(), __z.real());
      __t = std::asinh(__t);
      return std::complex<_Tp>(__t.imag(), -__t.real());
    }

#if _GLIBCXX_USE_C99_COMPLEX_TR1
  inline __complex__ float
  __complex_asin(__complex__ float __z)
  { return __builtin_casinf(__z); }

  inline __complex__ double
  __complex_asin(__complex__ double __z)
  { return __builtin_casin(__z); }

  inline __complex__ long double
  __complex_asin(const __complex__ long double& __z)
  { return __builtin_casinl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    asin(const std::complex<_Tp>& __z)
    { return __complex_asin(__z.__rep()); }
#else
  /// asin(__z) [8.1.3].
  //  Effects:  Behaves the same as C99 function casin, defined
  //            in subclause 7.3.5.2.
  template<typename _Tp>
    inline std::complex<_Tp>
    asin(const std::complex<_Tp>& __z)
    { return __complex_asin(__z); }
#endif
  
  template<typename _Tp>
    std::complex<_Tp>
    __complex_atan(const std::complex<_Tp>& __z)
    {
      const _Tp __r2 = __z.real() * __z.real();
      const _Tp __x = _Tp(1.0) - __r2 - __z.imag() * __z.imag();

      _Tp __num = __z.imag() + _Tp(1.0);
      _Tp __den = __z.imag() - _Tp(1.0);

      __num = __r2 + __num * __num;
      __den = __r2 + __den * __den;

      return std::complex<_Tp>(_Tp(0.5) * atan2(_Tp(2.0) * __z.real(), __x),
			       _Tp(0.25) * log(__num / __den));
    }

#if _GLIBCXX_USE_C99_COMPLEX_TR1
  inline __complex__ float
  __complex_atan(__complex__ float __z)
  { return __builtin_catanf(__z); }

  inline __complex__ double
  __complex_atan(__complex__ double __z)
  { return __builtin_catan(__z); }

  inline __complex__ long double
  __complex_atan(const __complex__ long double& __z)
  { return __builtin_catanl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    atan(const std::complex<_Tp>& __z)
    { return __complex_atan(__z.__rep()); }
#else
  /// atan(__z) [8.1.4].
  //  Effects:  Behaves the same as C99 function catan, defined
  //            in subclause 7.3.5.3.
  template<typename _Tp>
    inline std::complex<_Tp>
    atan(const std::complex<_Tp>& __z)
    { return __complex_atan(__z); }
#endif

  template<typename _Tp>
    std::complex<_Tp>
    __complex_acosh(const std::complex<_Tp>& __z)
    {
      // Kahan's formula.
      return _Tp(2.0) * std::log(std::sqrt(_Tp(0.5) * (__z + _Tp(1.0)))
				 + std::sqrt(_Tp(0.5) * (__z - _Tp(1.0))));
    }

#if _GLIBCXX_USE_C99_COMPLEX_TR1
  inline __complex__ float
  __complex_acosh(__complex__ float __z)
  { return __builtin_cacoshf(__z); }

  inline __complex__ double
  __complex_acosh(__complex__ double __z)
  { return __builtin_cacosh(__z); }

  inline __complex__ long double
  __complex_acosh(const __complex__ long double& __z)
  { return __builtin_cacoshl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    acosh(const std::complex<_Tp>& __z)
    { return __complex_acosh(__z.__rep()); }
#else
  /// acosh(__z) [8.1.5].
  //  Effects:  Behaves the same as C99 function cacosh, defined
  //            in subclause 7.3.6.1.
  template<typename _Tp>
    inline std::complex<_Tp>
    acosh(const std::complex<_Tp>& __z)
    { return __complex_acosh(__z); }
#endif

  template<typename _Tp>
    std::complex<_Tp>
    __complex_asinh(const std::complex<_Tp>& __z)
    {
      std::complex<_Tp> __t((__z.real() - __z.imag())
			    * (__z.real() + __z.imag()) + _Tp(1.0),
			    _Tp(2.0) * __z.real() * __z.imag());
      __t = std::sqrt(__t);

      return std::log(__t + __z);
    }

#if _GLIBCXX_USE_C99_COMPLEX_TR1
  inline __complex__ float
  __complex_asinh(__complex__ float __z)
  { return __builtin_casinhf(__z); }

  inline __complex__ double
  __complex_asinh(__complex__ double __z)
  { return __builtin_casinh(__z); }

  inline __complex__ long double
  __complex_asinh(const __complex__ long double& __z)
  { return __builtin_casinhl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    asinh(const std::complex<_Tp>& __z)
    { return __complex_asinh(__z.__rep()); }
#else
  /// asinh(__z) [8.1.6].
  //  Effects:  Behaves the same as C99 function casin, defined
  //            in subclause 7.3.6.2.
  template<typename _Tp>
    inline std::complex<_Tp>
    asinh(const std::complex<_Tp>& __z)
    { return __complex_asinh(__z); }
#endif

  template<typename _Tp>
    std::complex<_Tp>
    __complex_atanh(const std::complex<_Tp>& __z)
    {
      const _Tp __i2 = __z.imag() * __z.imag();
      const _Tp __x = _Tp(1.0) - __i2 - __z.real() * __z.real();

      _Tp __num = _Tp(1.0) + __z.real();
      _Tp __den = _Tp(1.0) - __z.real();

      __num = __i2 + __num * __num;
      __den = __i2 + __den * __den;

      return std::complex<_Tp>(_Tp(0.25) * (log(__num) - log(__den)),
			       _Tp(0.5) * atan2(_Tp(2.0) * __z.imag(), __x));
    }

#if _GLIBCXX_USE_C99_COMPLEX_TR1
  inline __complex__ float
  __complex_atanh(__complex__ float __z)
  { return __builtin_catanhf(__z); }

  inline __complex__ double
  __complex_atanh(__complex__ double __z)
  { return __builtin_catanh(__z); }

  inline __complex__ long double
  __complex_atanh(const __complex__ long double& __z)
  { return __builtin_catanhl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    atanh(const std::complex<_Tp>& __z)
    { return __complex_atanh(__z.__rep()); }
#else
  /// atanh(__z) [8.1.7].
  //  Effects:  Behaves the same as C99 function catanh, defined
  //            in subclause 7.3.6.3.
  template<typename _Tp>
    inline std::complex<_Tp>
    atanh(const std::complex<_Tp>& __z)
    { return __complex_atanh(__z); }
#endif

  template<typename _Tp>
    inline _Tp
    /// fabs(__z) [8.1.8].
    //  Effects:  Behaves the same as C99 function cabs, defined
    //            in subclause 7.3.8.1.
    fabs(const std::complex<_Tp>& __z)
    { return std::abs(__z); }

  /// Additional overloads [8.1.9].
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    arg(_Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
#if (_GLIBCXX_USE_C99_MATH && !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC)
      return std::signbit(__x) ? __type(3.1415926535897932384626433832795029L)
	                       : __type();
#else
      return std::arg(std::complex<__type>(__x));
#endif
    }

  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    imag(_Tp)
    { return _Tp(); }

  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    norm(_Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __type(__x) * __type(__x);
    }

  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    real(_Tp __x)
    { return __x; }

  template<typename _Tp, typename _Up>
    inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
    pow(const std::complex<_Tp>& __x, const _Up& __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return std::pow(std::complex<__type>(__x), __type(__y));
    }

  template<typename _Tp, typename _Up>
    inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
    pow(const _Tp& __x, const std::complex<_Up>& __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return std::pow(__type(__x), std::complex<__type>(__y));
    }

  template<typename _Tp, typename _Up>
    inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
    pow(const std::complex<_Tp>& __x, const std::complex<_Up>& __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return std::pow(std::complex<__type>(__x),
		      std::complex<__type>(__y));
    }

  // Forward declarations.
  // DR 781.
  template<typename _Tp> std::complex<_Tp> proj(const std::complex<_Tp>&);

  template<typename _Tp>
    std::complex<_Tp>
    __complex_proj(const std::complex<_Tp>& __z)
    {
      const _Tp __den = (__z.real() * __z.real()
			 + __z.imag() * __z.imag() + _Tp(1.0));

      return std::complex<_Tp>((_Tp(2.0) * __z.real()) / __den,
			       (_Tp(2.0) * __z.imag()) / __den);
    }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_proj(__complex__ float __z)
  { return __builtin_cprojf(__z); }

  inline __complex__ double
  __complex_proj(__complex__ double __z)
  { return __builtin_cproj(__z); }

  inline __complex__ long double
  __complex_proj(const __complex__ long double& __z)
  { return __builtin_cprojl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    proj(const std::complex<_Tp>& __z)
    { return __complex_proj(__z.__rep()); }
#else
  template<typename _Tp>
    inline std::complex<_Tp>
    proj(const std::complex<_Tp>& __z)
    { return __complex_proj(__z); }
#endif

  // DR 1137.
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    proj(_Tp __x)
    { return __x; }

  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    conj(_Tp __x)
    { return __x; }

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace

#endif  // C++11

#endif  /* _GLIBCXX_COMPLEX */

Filemanager

Name Type Size Permission Actions
backward Folder 0755
bits Folder 0755
debug Folder 0755
decimal Folder 0755
ext Folder 0755
parallel Folder 0755
profile Folder 0755
tr1 Folder 0755
tr2 Folder 0755
x86_64-redhat-linux Folder 0755
algorithm File 2.46 KB 0644
array File 9.27 KB 0644
atomic File 33.3 KB 0644
bitset File 44.55 KB 0644
cassert File 1.58 KB 0644
ccomplex File 1.29 KB 0644
cctype File 2.35 KB 0644
cerrno File 1.7 KB 0644
cfenv File 2 KB 0644
cfloat File 1.82 KB 0644
chrono File 23.04 KB 0644
cinttypes File 2.11 KB 0644
ciso646 File 1.46 KB 0644
climits File 1.84 KB 0644
clocale File 1.86 KB 0644
cmath File 41.45 KB 0644
complex File 51.29 KB 0644
complex.h File 1.43 KB 0644
condition_variable File 7.8 KB 0644
csetjmp File 1.9 KB 0644
csignal File 1.81 KB 0644
cstdalign File 1.37 KB 0644
cstdarg File 1.8 KB 0644
cstdbool File 1.37 KB 0644
cstddef File 1.57 KB 0644
cstdint File 2.12 KB 0644
cstdio File 4.18 KB 0644
cstdlib File 6.01 KB 0644
cstring File 3.05 KB 0644
ctgmath File 1.29 KB 0644
ctime File 2.08 KB 0644
cwchar File 6.34 KB 0644
cwctype File 2.73 KB 0644
cxxabi.h File 21.24 KB 0644
deque File 2.6 KB 0644
exception File 4.95 KB 0644
fenv.h File 1.97 KB 0644
forward_list File 1.54 KB 0644
fstream File 29.31 KB 0644
functional File 79.23 KB 0644
future File 41.7 KB 0644
initializer_list File 2.9 KB 0644
iomanip File 11.21 KB 0644
ios File 1.56 KB 0644
iosfwd File 6.69 KB 0644
iostream File 2.63 KB 0644
istream File 29.25 KB 0644
iterator File 2.58 KB 0644
limits File 65.68 KB 0644
list File 2.53 KB 0644
locale File 1.39 KB 0644
map File 2.5 KB 0644
memory File 2.81 KB 0644
mutex File 19.66 KB 0644
new File 4.09 KB 0644
numeric File 2.72 KB 0644
ostream File 19.19 KB 0644
queue File 2.41 KB 0644
random File 1.67 KB 0644
ratio File 18.69 KB 0644
regex File 1.82 KB 0644
scoped_allocator File 15.65 KB 0644
set File 2.5 KB 0644
sstream File 19.57 KB 0644
stack File 2.33 KB 0644
stdexcept File 4.61 KB 0644
streambuf File 28.71 KB 0644
string File 1.9 KB 0644
system_error File 10.11 KB 0644
tgmath.h File 1.33 KB 0644
thread File 7.08 KB 0644
tuple File 34.85 KB 0644
type_traits File 57.55 KB 0644
typeindex File 3.01 KB 0644
typeinfo File 7.5 KB 0644
unordered_map File 1.81 KB 0644
unordered_set File 1.81 KB 0644
utility File 5.22 KB 0644
valarray File 39.32 KB 0644
vector File 2.66 KB 0644