[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@18.118.119.238: ~ $
// <functional> -*- C++ -*-

// Copyright (C) 2001-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/*
 * Copyright (c) 1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 */

/** @file include/functional
 *  This is a Standard C++ Library header.
 */

#ifndef _GLIBCXX_FUNCTIONAL
#define _GLIBCXX_FUNCTIONAL 1

#pragma GCC system_header

#include <bits/c++config.h>
#include <bits/stl_function.h>

#if __cplusplus >= 201103L

#include <typeinfo>
#include <new>
#include <tuple>
#include <type_traits>
#include <bits/functexcept.h>
#include <bits/functional_hash.h>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  template<typename _MemberPointer>
    class _Mem_fn;
  template<typename _Tp, typename _Class>
    _Mem_fn<_Tp _Class::*>
    mem_fn(_Tp _Class::*) noexcept;

_GLIBCXX_HAS_NESTED_TYPE(result_type)

  /// If we have found a result_type, extract it.
  template<bool _Has_result_type, typename _Functor>
    struct _Maybe_get_result_type
    { };

  template<typename _Functor>
    struct _Maybe_get_result_type<true, _Functor>
    { typedef typename _Functor::result_type result_type; };

  /**
   *  Base class for any function object that has a weak result type, as
   *  defined in 3.3/3 of TR1.
  */
  template<typename _Functor>
    struct _Weak_result_type_impl
    : _Maybe_get_result_type<__has_result_type<_Functor>::value, _Functor>
    { };

  /// Retrieve the result type for a function type.
  template<typename _Res, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res(_ArgTypes...)>
    { typedef _Res result_type; };

  template<typename _Res, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res(_ArgTypes......)>
    { typedef _Res result_type; };

  template<typename _Res, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res(_ArgTypes...) const>
    { typedef _Res result_type; };

  template<typename _Res, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res(_ArgTypes......) const>
    { typedef _Res result_type; };

  template<typename _Res, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res(_ArgTypes...) volatile>
    { typedef _Res result_type; };

  template<typename _Res, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res(_ArgTypes......) volatile>
    { typedef _Res result_type; };

  template<typename _Res, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res(_ArgTypes...) const volatile>
    { typedef _Res result_type; };

  template<typename _Res, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res(_ArgTypes......) const volatile>
    { typedef _Res result_type; };

  /// Retrieve the result type for a function reference.
  template<typename _Res, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res(&)(_ArgTypes...)>
    { typedef _Res result_type; };

  template<typename _Res, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res(&)(_ArgTypes......)>
    { typedef _Res result_type; };

  /// Retrieve the result type for a function pointer.
  template<typename _Res, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res(*)(_ArgTypes...)>
    { typedef _Res result_type; };

  template<typename _Res, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res(*)(_ArgTypes......)>
    { typedef _Res result_type; };

  /// Retrieve result type for a member function pointer.
  template<typename _Res, typename _Class, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)>
    { typedef _Res result_type; };

  template<typename _Res, typename _Class, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......)>
    { typedef _Res result_type; };

  /// Retrieve result type for a const member function pointer.
  template<typename _Res, typename _Class, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) const>
    { typedef _Res result_type; };

  template<typename _Res, typename _Class, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......) const>
    { typedef _Res result_type; };

  /// Retrieve result type for a volatile member function pointer.
  template<typename _Res, typename _Class, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) volatile>
    { typedef _Res result_type; };

  template<typename _Res, typename _Class, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......) volatile>
    { typedef _Res result_type; };

  /// Retrieve result type for a const volatile member function pointer.
  template<typename _Res, typename _Class, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)
				  const volatile>
    { typedef _Res result_type; };

  template<typename _Res, typename _Class, typename... _ArgTypes>
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......)
				  const volatile>
    { typedef _Res result_type; };

  /**
   *  Strip top-level cv-qualifiers from the function object and let
   *  _Weak_result_type_impl perform the real work.
  */
  template<typename _Functor>
    struct _Weak_result_type
    : _Weak_result_type_impl<typename remove_cv<_Functor>::type>
    { };

  /// Determines if the type _Tp derives from unary_function.
  template<typename _Tp>
    struct _Derives_from_unary_function : __sfinae_types
    {
    private:
      template<typename _T1, typename _Res>
	static __one __test(const volatile unary_function<_T1, _Res>*);

      // It's tempting to change "..." to const volatile void*, but
      // that fails when _Tp is a function type.
      static __two __test(...);

    public:
      static const bool value = sizeof(__test((_Tp*)0)) == 1;
    };

  /// Determines if the type _Tp derives from binary_function.
  template<typename _Tp>
    struct _Derives_from_binary_function : __sfinae_types
    {
    private:
      template<typename _T1, typename _T2, typename _Res>
	static __one __test(const volatile binary_function<_T1, _T2, _Res>*);

      // It's tempting to change "..." to const volatile void*, but
      // that fails when _Tp is a function type.
      static __two __test(...);

    public:
      static const bool value = sizeof(__test((_Tp*)0)) == 1;
    };

  /**
   * Invoke a function object, which may be either a member pointer or a
   * function object. The first parameter will tell which.
   */
  template<typename _Functor, typename... _Args>
    inline
    typename enable_if<
	     (!is_member_pointer<_Functor>::value
	      && !is_function<_Functor>::value
	      && !is_function<typename remove_pointer<_Functor>::type>::value),
	     typename result_of<_Functor&(_Args&&...)>::type
	   >::type
    __invoke(_Functor& __f, _Args&&... __args)
    {
      return __f(std::forward<_Args>(__args)...);
    }

  template<typename _Functor, typename... _Args>
    inline
    typename enable_if<
             (is_member_pointer<_Functor>::value
              && !is_function<_Functor>::value
              && !is_function<typename remove_pointer<_Functor>::type>::value),
             typename result_of<_Functor(_Args&&...)>::type
           >::type
    __invoke(_Functor& __f, _Args&&... __args)
    {
      return std::mem_fn(__f)(std::forward<_Args>(__args)...);
    }

  // To pick up function references (that will become function pointers)
  template<typename _Functor, typename... _Args>
    inline
    typename enable_if<
	     (is_pointer<_Functor>::value
	      && is_function<typename remove_pointer<_Functor>::type>::value),
	     typename result_of<_Functor(_Args&&...)>::type
	   >::type
    __invoke(_Functor __f, _Args&&... __args)
    {
      return __f(std::forward<_Args>(__args)...);
    }

  /**
   *  Knowing which of unary_function and binary_function _Tp derives
   *  from, derives from the same and ensures that reference_wrapper
   *  will have a weak result type. See cases below.
   */
  template<bool _Unary, bool _Binary, typename _Tp>
    struct _Reference_wrapper_base_impl;

  // None of the nested argument types.
  template<typename _Tp>
    struct _Reference_wrapper_base_impl<false, false, _Tp>
    : _Weak_result_type<_Tp>
    { };

  // Nested argument_type only.
  template<typename _Tp>
    struct _Reference_wrapper_base_impl<true, false, _Tp>
    : _Weak_result_type<_Tp>
    {
      typedef typename _Tp::argument_type argument_type;
    };

  // Nested first_argument_type and second_argument_type only.
  template<typename _Tp>
    struct _Reference_wrapper_base_impl<false, true, _Tp>
    : _Weak_result_type<_Tp>
    {
      typedef typename _Tp::first_argument_type first_argument_type;
      typedef typename _Tp::second_argument_type second_argument_type;
    };

  // All the nested argument types.
   template<typename _Tp>
    struct _Reference_wrapper_base_impl<true, true, _Tp>
    : _Weak_result_type<_Tp>
    {
      typedef typename _Tp::argument_type argument_type;
      typedef typename _Tp::first_argument_type first_argument_type;
      typedef typename _Tp::second_argument_type second_argument_type;
    };

  _GLIBCXX_HAS_NESTED_TYPE(argument_type)
  _GLIBCXX_HAS_NESTED_TYPE(first_argument_type)
  _GLIBCXX_HAS_NESTED_TYPE(second_argument_type)

  /**
   *  Derives from unary_function or binary_function when it
   *  can. Specializations handle all of the easy cases. The primary
   *  template determines what to do with a class type, which may
   *  derive from both unary_function and binary_function.
  */
  template<typename _Tp>
    struct _Reference_wrapper_base
    : _Reference_wrapper_base_impl<
      __has_argument_type<_Tp>::value,
      __has_first_argument_type<_Tp>::value
      && __has_second_argument_type<_Tp>::value,
      _Tp>
    { };

  // - a function type (unary)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res(_T1)>
    : unary_function<_T1, _Res>
    { };

  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res(_T1) const>
    : unary_function<_T1, _Res>
    { };

  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res(_T1) volatile>
    : unary_function<_T1, _Res>
    { };

  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res(_T1) const volatile>
    : unary_function<_T1, _Res>
    { };

  // - a function type (binary)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res(_T1, _T2)>
    : binary_function<_T1, _T2, _Res>
    { };

  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res(_T1, _T2) const>
    : binary_function<_T1, _T2, _Res>
    { };

  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res(_T1, _T2) volatile>
    : binary_function<_T1, _T2, _Res>
    { };

  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res(_T1, _T2) const volatile>
    : binary_function<_T1, _T2, _Res>
    { };

  // - a function pointer type (unary)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res(*)(_T1)>
    : unary_function<_T1, _Res>
    { };

  // - a function pointer type (binary)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
    : binary_function<_T1, _T2, _Res>
    { };

  // - a pointer to member function type (unary, no qualifiers)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res (_T1::*)()>
    : unary_function<_T1*, _Res>
    { };

  // - a pointer to member function type (binary, no qualifiers)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
    : binary_function<_T1*, _T2, _Res>
    { };

  // - a pointer to member function type (unary, const)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res (_T1::*)() const>
    : unary_function<const _T1*, _Res>
    { };

  // - a pointer to member function type (binary, const)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
    : binary_function<const _T1*, _T2, _Res>
    { };

  // - a pointer to member function type (unary, volatile)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
    : unary_function<volatile _T1*, _Res>
    { };

  // - a pointer to member function type (binary, volatile)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
    : binary_function<volatile _T1*, _T2, _Res>
    { };

  // - a pointer to member function type (unary, const volatile)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
    : unary_function<const volatile _T1*, _Res>
    { };

  // - a pointer to member function type (binary, const volatile)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
    : binary_function<const volatile _T1*, _T2, _Res>
    { };

  /**
   *  @brief Primary class template for reference_wrapper.
   *  @ingroup functors
   *  @{
   */
  template<typename _Tp>
    class reference_wrapper
    : public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
    {
      _Tp* _M_data;

    public:
      typedef _Tp type;

      reference_wrapper(_Tp& __indata) noexcept
      : _M_data(std::__addressof(__indata))
      { }

      reference_wrapper(_Tp&&) = delete;

      reference_wrapper(const reference_wrapper<_Tp>& __inref) noexcept
      : _M_data(__inref._M_data)
      { }

      reference_wrapper&
      operator=(const reference_wrapper<_Tp>& __inref) noexcept
      {
	_M_data = __inref._M_data;
	return *this;
      }

      operator _Tp&() const noexcept
      { return this->get(); }

      _Tp&
      get() const noexcept
      { return *_M_data; }

      template<typename... _Args>
	typename result_of<_Tp&(_Args&&...)>::type
	operator()(_Args&&... __args) const
	{
	  return __invoke(get(), std::forward<_Args>(__args)...);
	}
    };


  /// Denotes a reference should be taken to a variable.
  template<typename _Tp>
    inline reference_wrapper<_Tp>
    ref(_Tp& __t) noexcept
    { return reference_wrapper<_Tp>(__t); }

  /// Denotes a const reference should be taken to a variable.
  template<typename _Tp>
    inline reference_wrapper<const _Tp>
    cref(const _Tp& __t) noexcept
    { return reference_wrapper<const _Tp>(__t); }

  template<typename _Tp>
    void ref(const _Tp&&) = delete;

  template<typename _Tp>
    void cref(const _Tp&&) = delete;

  /// Partial specialization.
  template<typename _Tp>
    inline reference_wrapper<_Tp>
    ref(reference_wrapper<_Tp> __t) noexcept
    { return ref(__t.get()); }

  /// Partial specialization.
  template<typename _Tp>
    inline reference_wrapper<const _Tp>
    cref(reference_wrapper<_Tp> __t) noexcept
    { return cref(__t.get()); }

  // @} group functors

  template<typename... _Types>
    struct _Pack : integral_constant<size_t, sizeof...(_Types)>
    { };

  template<typename _From, typename _To, bool = _From::value == _To::value>
    struct _AllConvertible : false_type
    { };

  template<typename... _From, typename... _To>
    struct _AllConvertible<_Pack<_From...>, _Pack<_To...>, true>
    : __and_<is_convertible<_From, _To>...>
    { };

  template<typename _Tp1, typename _Tp2>
    using _NotSame = __not_<is_same<typename std::decay<_Tp1>::type,
				    typename std::decay<_Tp2>::type>>;

  /**
   * Derives from @c unary_function or @c binary_function, or perhaps
   * nothing, depending on the number of arguments provided. The
   * primary template is the basis case, which derives nothing.
   */
  template<typename _Res, typename... _ArgTypes>
    struct _Maybe_unary_or_binary_function { };

  /// Derives from @c unary_function, as appropriate.
  template<typename _Res, typename _T1>
    struct _Maybe_unary_or_binary_function<_Res, _T1>
    : std::unary_function<_T1, _Res> { };

  /// Derives from @c binary_function, as appropriate.
  template<typename _Res, typename _T1, typename _T2>
    struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
    : std::binary_function<_T1, _T2, _Res> { };

  /// Implementation of @c mem_fn for member function pointers.
  template<typename _Res, typename _Class, typename... _ArgTypes>
    class _Mem_fn<_Res (_Class::*)(_ArgTypes...)>
    : public _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...>
    {
      typedef _Res (_Class::*_Functor)(_ArgTypes...);

      template<typename _Tp, typename... _Args>
	_Res
	_M_call(_Tp&& __object, const volatile _Class *,
		_Args&&... __args) const
	{
	  return (std::forward<_Tp>(__object).*__pmf)
	    (std::forward<_Args>(__args)...);
	}

      template<typename _Tp, typename... _Args>
	_Res
	_M_call(_Tp&& __ptr, const volatile void *, _Args&&... __args) const
	{ return ((*__ptr).*__pmf)(std::forward<_Args>(__args)...); }

      // Require each _Args to be convertible to corresponding _ArgTypes
      template<typename... _Args>
	using _RequireValidArgs
	  = _Require<_AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;

      // Require each _Args to be convertible to corresponding _ArgTypes
      // and require _Tp is not _Class, _Class& or _Class*
      template<typename _Tp, typename... _Args>
	using _RequireValidArgs2
	  = _Require<_NotSame<_Class, _Tp>, _NotSame<_Class*, _Tp>,
		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;

      // Require each _Args to be convertible to corresponding _ArgTypes
      // and require _Tp is _Class or derived from _Class
      template<typename _Tp, typename... _Args>
	using _RequireValidArgs3
	  = _Require<is_base_of<_Class, _Tp>,
		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;

    public:
      typedef _Res result_type;

      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }

      // Handle objects
      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
	_Res
	operator()(_Class& __object, _Args&&... __args) const
	{ return (__object.*__pmf)(std::forward<_Args>(__args)...); }

      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
	_Res
	operator()(_Class&& __object, _Args&&... __args) const
	{
	  return (std::move(__object).*__pmf)(std::forward<_Args>(__args)...);
	}

      // Handle pointers
      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
	_Res
	operator()(_Class* __object, _Args&&... __args) const
	{ return (__object->*__pmf)(std::forward<_Args>(__args)...); }

      // Handle smart pointers, references and pointers to derived
      template<typename _Tp, typename... _Args,
	       typename _Req = _RequireValidArgs2<_Tp, _Args...>>
	_Res
	operator()(_Tp&& __object, _Args&&... __args) const
	{
	  return _M_call(std::forward<_Tp>(__object), &__object,
	      std::forward<_Args>(__args)...);
	}

      template<typename _Tp, typename... _Args,
	       typename _Req = _RequireValidArgs3<_Tp, _Args...>>
	_Res
	operator()(reference_wrapper<_Tp> __ref, _Args&&... __args) const
	{ return operator()(__ref.get(), std::forward<_Args>(__args)...); }

    private:
      _Functor __pmf;
    };

  /// Implementation of @c mem_fn for const member function pointers.
  template<typename _Res, typename _Class, typename... _ArgTypes>
    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const>
    : public _Maybe_unary_or_binary_function<_Res, const _Class*,
					     _ArgTypes...>
    {
      typedef _Res (_Class::*_Functor)(_ArgTypes...) const;

      template<typename _Tp, typename... _Args>
	_Res
	_M_call(_Tp&& __object, const volatile _Class *,
		_Args&&... __args) const
	{
	  return (std::forward<_Tp>(__object).*__pmf)
	    (std::forward<_Args>(__args)...);
	}

      template<typename _Tp, typename... _Args>
	_Res
	_M_call(_Tp&& __ptr, const volatile void *, _Args&&... __args) const
	{ return ((*__ptr).*__pmf)(std::forward<_Args>(__args)...); }

      template<typename... _Args>
	using _RequireValidArgs
	  = _Require<_AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;

      template<typename _Tp, typename... _Args>
	using _RequireValidArgs2
	  = _Require<_NotSame<_Class, _Tp>, _NotSame<const _Class*, _Tp>,
		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;

      template<typename _Tp, typename... _Args>
	using _RequireValidArgs3
	  = _Require<is_base_of<_Class, _Tp>,
		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;

    public:
      typedef _Res result_type;

      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }

      // Handle objects
      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
	_Res
	operator()(const _Class& __object, _Args&&... __args) const
	{ return (__object.*__pmf)(std::forward<_Args>(__args)...); }

      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
	_Res
	operator()(const _Class&& __object, _Args&&... __args) const
	{
	  return (std::move(__object).*__pmf)(std::forward<_Args>(__args)...);
	}

      // Handle pointers
      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
	_Res
	operator()(const _Class* __object, _Args&&... __args) const
	{ return (__object->*__pmf)(std::forward<_Args>(__args)...); }

      // Handle smart pointers, references and pointers to derived
      template<typename _Tp, typename... _Args,
	       typename _Req = _RequireValidArgs2<_Tp, _Args...>>
	_Res operator()(_Tp&& __object, _Args&&... __args) const
	{
	  return _M_call(std::forward<_Tp>(__object), &__object,
	      std::forward<_Args>(__args)...);
	}

      template<typename _Tp, typename... _Args,
	       typename _Req = _RequireValidArgs3<_Tp, _Args...>>
	_Res
	operator()(reference_wrapper<_Tp> __ref, _Args&&... __args) const
	{ return operator()(__ref.get(), std::forward<_Args>(__args)...); }

    private:
      _Functor __pmf;
    };

  /// Implementation of @c mem_fn for volatile member function pointers.
  template<typename _Res, typename _Class, typename... _ArgTypes>
    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) volatile>
    : public _Maybe_unary_or_binary_function<_Res, volatile _Class*,
					     _ArgTypes...>
    {
      typedef _Res (_Class::*_Functor)(_ArgTypes...) volatile;

      template<typename _Tp, typename... _Args>
	_Res
	_M_call(_Tp&& __object, const volatile _Class *,
		_Args&&... __args) const
	{
	  return (std::forward<_Tp>(__object).*__pmf)
	    (std::forward<_Args>(__args)...);
	}

      template<typename _Tp, typename... _Args>
	_Res
	_M_call(_Tp&& __ptr, const volatile void *, _Args&&... __args) const
	{ return ((*__ptr).*__pmf)(std::forward<_Args>(__args)...); }

      template<typename... _Args>
	using _RequireValidArgs
	  = _Require<_AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;

      template<typename _Tp, typename... _Args>
	using _RequireValidArgs2
	  = _Require<_NotSame<_Class, _Tp>, _NotSame<volatile _Class*, _Tp>,
		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;

      template<typename _Tp, typename... _Args>
	using _RequireValidArgs3
	  = _Require<is_base_of<_Class, _Tp>,
		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;

    public:
      typedef _Res result_type;

      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }

      // Handle objects
      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
	_Res
	operator()(volatile _Class& __object, _Args&&... __args) const
	{ return (__object.*__pmf)(std::forward<_Args>(__args)...); }

      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
	_Res
	operator()(volatile _Class&& __object, _Args&&... __args) const
	{
	  return (std::move(__object).*__pmf)(std::forward<_Args>(__args)...);
	}

      // Handle pointers
      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
	_Res
	operator()(volatile _Class* __object, _Args&&... __args) const
	{ return (__object->*__pmf)(std::forward<_Args>(__args)...); }

      // Handle smart pointers, references and pointers to derived
      template<typename _Tp, typename... _Args,
	       typename _Req = _RequireValidArgs2<_Tp, _Args...>>
	_Res
	operator()(_Tp&& __object, _Args&&... __args) const
	{
	  return _M_call(std::forward<_Tp>(__object), &__object,
	      std::forward<_Args>(__args)...);
	}

      template<typename _Tp, typename... _Args,
	       typename _Req = _RequireValidArgs3<_Tp, _Args...>>
	_Res
	operator()(reference_wrapper<_Tp> __ref, _Args&&... __args) const
	{ return operator()(__ref.get(), std::forward<_Args>(__args)...); }

    private:
      _Functor __pmf;
    };

  /// Implementation of @c mem_fn for const volatile member function pointers.
  template<typename _Res, typename _Class, typename... _ArgTypes>
    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const volatile>
    : public _Maybe_unary_or_binary_function<_Res, const volatile _Class*,
					     _ArgTypes...>
    {
      typedef _Res (_Class::*_Functor)(_ArgTypes...) const volatile;

      template<typename _Tp, typename... _Args>
	_Res
	_M_call(_Tp&& __object, const volatile _Class *,
		_Args&&... __args) const
	{
	  return (std::forward<_Tp>(__object).*__pmf)
	    (std::forward<_Args>(__args)...);
	}

      template<typename _Tp, typename... _Args>
	_Res
	_M_call(_Tp&& __ptr, const volatile void *, _Args&&... __args) const
	{ return ((*__ptr).*__pmf)(std::forward<_Args>(__args)...); }

      template<typename... _Args>
	using _RequireValidArgs
	  = _Require<_AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;

      template<typename _Tp, typename... _Args>
	using _RequireValidArgs2
	  = _Require<_NotSame<_Class, _Tp>,
		     _NotSame<const volatile _Class*, _Tp>,
		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;

      template<typename _Tp, typename... _Args>
	using _RequireValidArgs3
	  = _Require<is_base_of<_Class, _Tp>,
		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;

    public:
      typedef _Res result_type;

      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }

      // Handle objects
      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
	_Res
	operator()(const volatile _Class& __object, _Args&&... __args) const
	{ return (__object.*__pmf)(std::forward<_Args>(__args)...); }

      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
	_Res
	operator()(const volatile _Class&& __object, _Args&&... __args) const
	{
	  return (std::move(__object).*__pmf)(std::forward<_Args>(__args)...);
	}

      // Handle pointers
      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
	_Res
	operator()(const volatile _Class* __object, _Args&&... __args) const
	{ return (__object->*__pmf)(std::forward<_Args>(__args)...); }

      // Handle smart pointers, references and pointers to derived
      template<typename _Tp, typename... _Args,
	       typename _Req = _RequireValidArgs2<_Tp, _Args...>>
	_Res operator()(_Tp&& __object, _Args&&... __args) const
	{
	  return _M_call(std::forward<_Tp>(__object), &__object,
	      std::forward<_Args>(__args)...);
	}

      template<typename _Tp, typename... _Args,
	       typename _Req = _RequireValidArgs3<_Tp, _Args...>>
	_Res
	operator()(reference_wrapper<_Tp> __ref, _Args&&... __args) const
	{ return operator()(__ref.get(), std::forward<_Args>(__args)...); }

    private:
      _Functor __pmf;
    };


  template<typename _Tp, bool>
    struct _Mem_fn_const_or_non
    {
      typedef const _Tp& type;
    };

  template<typename _Tp>
    struct _Mem_fn_const_or_non<_Tp, false>
    {
      typedef _Tp& type;
    };

  template<typename _Res, typename _Class>
    class _Mem_fn<_Res _Class::*>
    {
      using __pm_type = _Res _Class::*;

      // This bit of genius is due to Peter Dimov, improved slightly by
      // Douglas Gregor.
      // Made less elegant to support perfect forwarding and noexcept.
      template<typename _Tp>
	auto
	_M_call(_Tp&& __object, const _Class *) const noexcept
	-> decltype(std::forward<_Tp>(__object).*std::declval<__pm_type&>())
	{ return std::forward<_Tp>(__object).*__pm; }

      template<typename _Tp, typename _Up>
	auto
	_M_call(_Tp&& __object, _Up * const *) const noexcept
	-> decltype((*std::forward<_Tp>(__object)).*std::declval<__pm_type&>())
	{ return (*std::forward<_Tp>(__object)).*__pm; }

      template<typename _Tp>
	auto
	_M_call(_Tp&& __ptr, const volatile void*) const
	noexcept(noexcept((*__ptr).*std::declval<__pm_type&>()))
	-> decltype((*__ptr).*std::declval<__pm_type&>())
	{ return (*__ptr).*__pm; }

    public:
      explicit
      _Mem_fn(_Res _Class::*__pm) noexcept : __pm(__pm) { }

      // Handle objects
      _Res&
      operator()(_Class& __object) const noexcept
      { return __object.*__pm; }

      const _Res&
      operator()(const _Class& __object) const noexcept
      { return __object.*__pm; }

      _Res&&
      operator()(_Class&& __object) const noexcept
      { return std::forward<_Class>(__object).*__pm; }

      const _Res&&
      operator()(const _Class&& __object) const noexcept
      { return std::forward<const _Class>(__object).*__pm; }

      // Handle pointers
      _Res&
      operator()(_Class* __object) const noexcept
      { return __object->*__pm; }

      const _Res&
      operator()(const _Class* __object) const noexcept
      { return __object->*__pm; }

      // Handle smart pointers and derived
      template<typename _Tp, typename _Req = _Require<_NotSame<_Class*, _Tp>>>
	auto
	operator()(_Tp&& __unknown) const
	noexcept(noexcept(std::declval<_Mem_fn*>()->_M_call
			  (std::forward<_Tp>(__unknown), &__unknown)))
	-> decltype(this->_M_call(std::forward<_Tp>(__unknown), &__unknown))
	{ return _M_call(std::forward<_Tp>(__unknown), &__unknown); }

      template<typename _Tp, typename _Req = _Require<is_base_of<_Class, _Tp>>>
	auto
	operator()(reference_wrapper<_Tp> __ref) const
	noexcept(noexcept(std::declval<_Mem_fn&>()(__ref.get())))
	-> decltype((*this)(__ref.get()))
	{ return (*this)(__ref.get()); }

    private:
      _Res _Class::*__pm;
    };

  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // 2048.  Unnecessary mem_fn overloads
  /**
   *  @brief Returns a function object that forwards to the member
   *  pointer @a pm.
   *  @ingroup functors
   */
  template<typename _Tp, typename _Class>
    inline _Mem_fn<_Tp _Class::*>
    mem_fn(_Tp _Class::* __pm) noexcept
    {
      return _Mem_fn<_Tp _Class::*>(__pm);
    }

  /**
   *  @brief Determines if the given type _Tp is a function object
   *  should be treated as a subexpression when evaluating calls to
   *  function objects returned by bind(). [TR1 3.6.1]
   *  @ingroup binders
   */
  template<typename _Tp>
    struct is_bind_expression
    : public false_type { };

  /**
   *  @brief Determines if the given type _Tp is a placeholder in a
   *  bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
   *  @ingroup binders
   */
  template<typename _Tp>
    struct is_placeholder
    : public integral_constant<int, 0>
    { };

  /** @brief The type of placeholder objects defined by libstdc++.
   *  @ingroup binders
   */
  template<int _Num> struct _Placeholder { };

  _GLIBCXX_END_NAMESPACE_VERSION

  /** @namespace std::placeholders
   *  @brief ISO C++11 entities sub-namespace for functional.
   *  @ingroup binders
   */
  namespace placeholders
  {
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
  /* Define a large number of placeholders. There is no way to
   * simplify this with variadic templates, because we're introducing
   * unique names for each.
   */
    extern const _Placeholder<1> _1;
    extern const _Placeholder<2> _2;
    extern const _Placeholder<3> _3;
    extern const _Placeholder<4> _4;
    extern const _Placeholder<5> _5;
    extern const _Placeholder<6> _6;
    extern const _Placeholder<7> _7;
    extern const _Placeholder<8> _8;
    extern const _Placeholder<9> _9;
    extern const _Placeholder<10> _10;
    extern const _Placeholder<11> _11;
    extern const _Placeholder<12> _12;
    extern const _Placeholder<13> _13;
    extern const _Placeholder<14> _14;
    extern const _Placeholder<15> _15;
    extern const _Placeholder<16> _16;
    extern const _Placeholder<17> _17;
    extern const _Placeholder<18> _18;
    extern const _Placeholder<19> _19;
    extern const _Placeholder<20> _20;
    extern const _Placeholder<21> _21;
    extern const _Placeholder<22> _22;
    extern const _Placeholder<23> _23;
    extern const _Placeholder<24> _24;
    extern const _Placeholder<25> _25;
    extern const _Placeholder<26> _26;
    extern const _Placeholder<27> _27;
    extern const _Placeholder<28> _28;
    extern const _Placeholder<29> _29;
  _GLIBCXX_END_NAMESPACE_VERSION
  }

  _GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   *  Partial specialization of is_placeholder that provides the placeholder
   *  number for the placeholder objects defined by libstdc++.
   *  @ingroup binders
   */
  template<int _Num>
    struct is_placeholder<_Placeholder<_Num> >
    : public integral_constant<int, _Num>
    { };

  template<int _Num>
    struct is_placeholder<const _Placeholder<_Num> >
    : public integral_constant<int, _Num>
    { };

  /**
   * Used by _Safe_tuple_element to indicate that there is no tuple
   * element at this position.
   */
  struct _No_tuple_element;

  /**
   * Implementation helper for _Safe_tuple_element. This primary
   * template handles the case where it is safe to use @c
   * tuple_element.
   */
  template<std::size_t __i, typename _Tuple, bool _IsSafe>
    struct _Safe_tuple_element_impl
    : tuple_element<__i, _Tuple> { };

  /**
   * Implementation helper for _Safe_tuple_element. This partial
   * specialization handles the case where it is not safe to use @c
   * tuple_element. We just return @c _No_tuple_element.
   */
  template<std::size_t __i, typename _Tuple>
    struct _Safe_tuple_element_impl<__i, _Tuple, false>
    {
      typedef _No_tuple_element type;
    };

  /**
   * Like tuple_element, but returns @c _No_tuple_element when
   * tuple_element would return an error.
   */
 template<std::size_t __i, typename _Tuple>
   struct _Safe_tuple_element
   : _Safe_tuple_element_impl<__i, _Tuple,
			      (__i < tuple_size<_Tuple>::value)>
   { };

  /**
   *  Maps an argument to bind() into an actual argument to the bound
   *  function object [TR1 3.6.3/5]. Only the first parameter should
   *  be specified: the rest are used to determine among the various
   *  implementations. Note that, although this class is a function
   *  object, it isn't entirely normal because it takes only two
   *  parameters regardless of the number of parameters passed to the
   *  bind expression. The first parameter is the bound argument and
   *  the second parameter is a tuple containing references to the
   *  rest of the arguments.
   */
  template<typename _Arg,
	   bool _IsBindExp = is_bind_expression<_Arg>::value,
	   bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
    class _Mu;

  /**
   *  If the argument is reference_wrapper<_Tp>, returns the
   *  underlying reference. [TR1 3.6.3/5 bullet 1]
   */
  template<typename _Tp>
    class _Mu<reference_wrapper<_Tp>, false, false>
    {
    public:
      typedef _Tp& result_type;

      /* Note: This won't actually work for const volatile
       * reference_wrappers, because reference_wrapper::get() is const
       * but not volatile-qualified. This might be a defect in the TR.
       */
      template<typename _CVRef, typename _Tuple>
	result_type
	operator()(_CVRef& __arg, _Tuple&) const volatile
	{ return __arg.get(); }
    };

  /**
   *  If the argument is a bind expression, we invoke the underlying
   *  function object with the same cv-qualifiers as we are given and
   *  pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
   */
  template<typename _Arg>
    class _Mu<_Arg, true, false>
    {
    public:
      template<typename _CVArg, typename... _Args>
	auto
	operator()(_CVArg& __arg,
		   tuple<_Args...>& __tuple) const volatile
	-> decltype(__arg(declval<_Args>()...))
	{
	  // Construct an index tuple and forward to __call
	  typedef typename _Build_index_tuple<sizeof...(_Args)>::__type
	    _Indexes;
	  return this->__call(__arg, __tuple, _Indexes());
	}

    private:
      // Invokes the underlying function object __arg by unpacking all
      // of the arguments in the tuple.
      template<typename _CVArg, typename... _Args, std::size_t... _Indexes>
	auto
	__call(_CVArg& __arg, tuple<_Args...>& __tuple,
	       const _Index_tuple<_Indexes...>&) const volatile
	-> decltype(__arg(declval<_Args>()...))
	{
	  return __arg(std::forward<_Args>(get<_Indexes>(__tuple))...);
	}
    };

  /**
   *  If the argument is a placeholder for the Nth argument, returns
   *  a reference to the Nth argument to the bind function object.
   *  [TR1 3.6.3/5 bullet 3]
   */
  template<typename _Arg>
    class _Mu<_Arg, false, true>
    {
    public:
      template<typename _Signature> class result;

      template<typename _CVMu, typename _CVArg, typename _Tuple>
	class result<_CVMu(_CVArg, _Tuple)>
	{
	  // Add a reference, if it hasn't already been done for us.
	  // This allows us to be a little bit sloppy in constructing
	  // the tuple that we pass to result_of<...>.
	  typedef typename _Safe_tuple_element<(is_placeholder<_Arg>::value
						- 1), _Tuple>::type
	    __base_type;

	public:
	  typedef typename add_rvalue_reference<__base_type>::type type;
	};

      template<typename _Tuple>
	typename result<_Mu(_Arg, _Tuple)>::type
	operator()(const volatile _Arg&, _Tuple& __tuple) const volatile
	{
	  return std::forward<typename result<_Mu(_Arg, _Tuple)>::type>(
	      ::std::get<(is_placeholder<_Arg>::value - 1)>(__tuple));
	}
    };

  /**
   *  If the argument is just a value, returns a reference to that
   *  value. The cv-qualifiers on the reference are the same as the
   *  cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
   */
  template<typename _Arg>
    class _Mu<_Arg, false, false>
    {
    public:
      template<typename _Signature> struct result;

      template<typename _CVMu, typename _CVArg, typename _Tuple>
	struct result<_CVMu(_CVArg, _Tuple)>
	{
	  typedef typename add_lvalue_reference<_CVArg>::type type;
	};

      // Pick up the cv-qualifiers of the argument
      template<typename _CVArg, typename _Tuple>
	_CVArg&&
	operator()(_CVArg&& __arg, _Tuple&) const volatile
	{ return std::forward<_CVArg>(__arg); }
    };

  /**
   *  Maps member pointers into instances of _Mem_fn but leaves all
   *  other function objects untouched. Used by tr1::bind(). The
   *  primary template handles the non--member-pointer case.
   */
  template<typename _Tp>
    struct _Maybe_wrap_member_pointer
    {
      typedef _Tp type;

      static const _Tp&
      __do_wrap(const _Tp& __x)
      { return __x; }

      static _Tp&&
      __do_wrap(_Tp&& __x)
      { return static_cast<_Tp&&>(__x); }
    };

  /**
   *  Maps member pointers into instances of _Mem_fn but leaves all
   *  other function objects untouched. Used by tr1::bind(). This
   *  partial specialization handles the member pointer case.
   */
  template<typename _Tp, typename _Class>
    struct _Maybe_wrap_member_pointer<_Tp _Class::*>
    {
      typedef _Mem_fn<_Tp _Class::*> type;

      static type
      __do_wrap(_Tp _Class::* __pm)
      { return type(__pm); }
    };

  // Specialization needed to prevent "forming reference to void" errors when
  // bind<void>() is called, because argument deduction instantiates
  // _Maybe_wrap_member_pointer<void> outside the immediate context where
  // SFINAE applies.
  template<>
    struct _Maybe_wrap_member_pointer<void>
    {
      typedef void type;
    };

  // std::get<I> for volatile-qualified tuples
  template<std::size_t _Ind, typename... _Tp>
    inline auto
    __volget(volatile tuple<_Tp...>& __tuple)
    -> typename tuple_element<_Ind, tuple<_Tp...>>::type volatile&
    { return std::get<_Ind>(const_cast<tuple<_Tp...>&>(__tuple)); }

  // std::get<I> for const-volatile-qualified tuples
  template<std::size_t _Ind, typename... _Tp>
    inline auto
    __volget(const volatile tuple<_Tp...>& __tuple)
    -> typename tuple_element<_Ind, tuple<_Tp...>>::type const volatile&
    { return std::get<_Ind>(const_cast<const tuple<_Tp...>&>(__tuple)); }

  /// Type of the function object returned from bind().
  template<typename _Signature>
    struct _Bind;

   template<typename _Functor, typename... _Bound_args>
    class _Bind<_Functor(_Bound_args...)>
    : public _Weak_result_type<_Functor>
    {
      typedef _Bind __self_type;
      typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
	_Bound_indexes;

      _Functor _M_f;
      tuple<_Bound_args...> _M_bound_args;

      // Call unqualified
      template<typename _Result, typename... _Args, std::size_t... _Indexes>
	_Result
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>)
	{
	  return _M_f(_Mu<_Bound_args>()
		      (get<_Indexes>(_M_bound_args), __args)...);
	}

      // Call as const
      template<typename _Result, typename... _Args, std::size_t... _Indexes>
	_Result
	__call_c(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) const
	{
	  return _M_f(_Mu<_Bound_args>()
		      (get<_Indexes>(_M_bound_args), __args)...);
	}

      // Call as volatile
      template<typename _Result, typename... _Args, std::size_t... _Indexes>
	_Result
	__call_v(tuple<_Args...>&& __args,
		 _Index_tuple<_Indexes...>) volatile
	{
	  return _M_f(_Mu<_Bound_args>()
		      (__volget<_Indexes>(_M_bound_args), __args)...);
	}

      // Call as const volatile
      template<typename _Result, typename... _Args, std::size_t... _Indexes>
	_Result
	__call_c_v(tuple<_Args...>&& __args,
		   _Index_tuple<_Indexes...>) const volatile
	{
	  return _M_f(_Mu<_Bound_args>()
		      (__volget<_Indexes>(_M_bound_args), __args)...);
	}

     public:
      template<typename... _Args>
	explicit _Bind(const _Functor& __f, _Args&&... __args)
	: _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
	{ }

      template<typename... _Args>
	explicit _Bind(_Functor&& __f, _Args&&... __args)
	: _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
	{ }

      _Bind(const _Bind&) = default;

      _Bind(_Bind&& __b)
      : _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
      { }

      // Call unqualified
      template<typename... _Args, typename _Result
	= decltype( std::declval<_Functor>()(
	      _Mu<_Bound_args>()( std::declval<_Bound_args&>(),
				  std::declval<tuple<_Args...>&>() )... ) )>
	_Result
	operator()(_Args&&... __args)
	{
	  return this->__call<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}

      // Call as const
      template<typename... _Args, typename _Result
	= decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
		       typename add_const<_Functor>::type>::type>()(
	      _Mu<_Bound_args>()( std::declval<const _Bound_args&>(),
				  std::declval<tuple<_Args...>&>() )... ) )>
	_Result
	operator()(_Args&&... __args) const
	{
	  return this->__call_c<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}

      // Call as volatile
      template<typename... _Args, typename _Result
	= decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
                       typename add_volatile<_Functor>::type>::type>()(
	      _Mu<_Bound_args>()( std::declval<volatile _Bound_args&>(),
				  std::declval<tuple<_Args...>&>() )... ) )>
	_Result
	operator()(_Args&&... __args) volatile
	{
	  return this->__call_v<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}

      // Call as const volatile
      template<typename... _Args, typename _Result
	= decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
                       typename add_cv<_Functor>::type>::type>()(
	      _Mu<_Bound_args>()( std::declval<const volatile _Bound_args&>(),
				  std::declval<tuple<_Args...>&>() )... ) )>
	_Result
	operator()(_Args&&... __args) const volatile
	{
	  return this->__call_c_v<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}
    };

  /// Type of the function object returned from bind<R>().
  template<typename _Result, typename _Signature>
    struct _Bind_result;

  template<typename _Result, typename _Functor, typename... _Bound_args>
    class _Bind_result<_Result, _Functor(_Bound_args...)>
    {
      typedef _Bind_result __self_type;
      typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
	_Bound_indexes;

      _Functor _M_f;
      tuple<_Bound_args...> _M_bound_args;

      // sfinae types
      template<typename _Res>
	struct __enable_if_void : enable_if<is_void<_Res>::value, int> { };
      template<typename _Res>
	struct __disable_if_void : enable_if<!is_void<_Res>::value, int> { };

      // Call unqualified
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	_Result
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
	    typename __disable_if_void<_Res>::type = 0)
	{
	  return _M_f(_Mu<_Bound_args>()
		      (get<_Indexes>(_M_bound_args), __args)...);
	}

      // Call unqualified, return void
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	void
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
	    typename __enable_if_void<_Res>::type = 0)
	{
	  _M_f(_Mu<_Bound_args>()
	       (get<_Indexes>(_M_bound_args), __args)...);
	}

      // Call as const
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	_Result
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
	    typename __disable_if_void<_Res>::type = 0) const
	{
	  return _M_f(_Mu<_Bound_args>()
		      (get<_Indexes>(_M_bound_args), __args)...);
	}

      // Call as const, return void
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	void
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
	    typename __enable_if_void<_Res>::type = 0) const
	{
	  _M_f(_Mu<_Bound_args>()
	       (get<_Indexes>(_M_bound_args),  __args)...);
	}

      // Call as volatile
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	_Result
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
	    typename __disable_if_void<_Res>::type = 0) volatile
	{
	  return _M_f(_Mu<_Bound_args>()
		      (__volget<_Indexes>(_M_bound_args), __args)...);
	}

      // Call as volatile, return void
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	void
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
	    typename __enable_if_void<_Res>::type = 0) volatile
	{
	  _M_f(_Mu<_Bound_args>()
	       (__volget<_Indexes>(_M_bound_args), __args)...);
	}

      // Call as const volatile
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	_Result
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
	    typename __disable_if_void<_Res>::type = 0) const volatile
	{
	  return _M_f(_Mu<_Bound_args>()
		      (__volget<_Indexes>(_M_bound_args), __args)...);
	}

      // Call as const volatile, return void
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	void
	__call(tuple<_Args...>&& __args,
	       _Index_tuple<_Indexes...>,
	    typename __enable_if_void<_Res>::type = 0) const volatile
	{
	  _M_f(_Mu<_Bound_args>()
	       (__volget<_Indexes>(_M_bound_args), __args)...);
	}

    public:
      typedef _Result result_type;

      template<typename... _Args>
	explicit _Bind_result(const _Functor& __f, _Args&&... __args)
	: _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
	{ }

      template<typename... _Args>
	explicit _Bind_result(_Functor&& __f, _Args&&... __args)
	: _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
	{ }

      _Bind_result(const _Bind_result&) = default;

      _Bind_result(_Bind_result&& __b)
      : _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
      { }

      // Call unqualified
      template<typename... _Args>
	result_type
	operator()(_Args&&... __args)
	{
	  return this->__call<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}

      // Call as const
      template<typename... _Args>
	result_type
	operator()(_Args&&... __args) const
	{
	  return this->__call<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}

      // Call as volatile
      template<typename... _Args>
	result_type
	operator()(_Args&&... __args) volatile
	{
	  return this->__call<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}

      // Call as const volatile
      template<typename... _Args>
	result_type
	operator()(_Args&&... __args) const volatile
	{
	  return this->__call<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}
    };

  /**
   *  @brief Class template _Bind is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Signature>
    struct is_bind_expression<_Bind<_Signature> >
    : public true_type { };

  /**
   *  @brief Class template _Bind is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Signature>
    struct is_bind_expression<const _Bind<_Signature> >
    : public true_type { };

  /**
   *  @brief Class template _Bind is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Signature>
    struct is_bind_expression<volatile _Bind<_Signature> >
    : public true_type { };

  /**
   *  @brief Class template _Bind is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Signature>
    struct is_bind_expression<const volatile _Bind<_Signature>>
    : public true_type { };

  /**
   *  @brief Class template _Bind_result is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Result, typename _Signature>
    struct is_bind_expression<_Bind_result<_Result, _Signature>>
    : public true_type { };

  /**
   *  @brief Class template _Bind_result is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Result, typename _Signature>
    struct is_bind_expression<const _Bind_result<_Result, _Signature>>
    : public true_type { };

  /**
   *  @brief Class template _Bind_result is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Result, typename _Signature>
    struct is_bind_expression<volatile _Bind_result<_Result, _Signature>>
    : public true_type { };

  /**
   *  @brief Class template _Bind_result is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Result, typename _Signature>
    struct is_bind_expression<const volatile _Bind_result<_Result, _Signature>>
    : public true_type { };

  // Trait type used to remove std::bind() from overload set via SFINAE
  // when first argument has integer type, so that std::bind() will
  // not be a better match than ::bind() from the BSD Sockets API.
  template<typename _Tp, typename _Tp2 = typename decay<_Tp>::type>
    using __is_socketlike = __or_<is_integral<_Tp2>, is_enum<_Tp2>>;

  template<bool _SocketLike, typename _Func, typename... _BoundArgs>
    struct _Bind_helper
    {
      typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
	__maybe_type;
      typedef typename __maybe_type::type __func_type;
      typedef _Bind<__func_type(typename decay<_BoundArgs>::type...)> type;
    };

  // Partial specialization for is_socketlike == true, does not define
  // nested type so std::bind() will not participate in overload resolution
  // when the first argument might be a socket file descriptor.
  template<typename _Func, typename... _BoundArgs>
    struct _Bind_helper<true, _Func, _BoundArgs...>
    { };

  /**
   *  @brief Function template for std::bind.
   *  @ingroup binders
   */
  template<typename _Func, typename... _BoundArgs>
    inline typename
    _Bind_helper<__is_socketlike<_Func>::value, _Func, _BoundArgs...>::type
    bind(_Func&& __f, _BoundArgs&&... __args)
    {
      typedef _Bind_helper<false, _Func, _BoundArgs...> __helper_type;
      typedef typename __helper_type::__maybe_type __maybe_type;
      typedef typename __helper_type::type __result_type;
      return __result_type(__maybe_type::__do_wrap(std::forward<_Func>(__f)),
			   std::forward<_BoundArgs>(__args)...);
    }

  template<typename _Result, typename _Func, typename... _BoundArgs>
    struct _Bindres_helper
    {
      typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
	__maybe_type;
      typedef typename __maybe_type::type __functor_type;
      typedef _Bind_result<_Result,
			   __functor_type(typename decay<_BoundArgs>::type...)>
	type;
    };

  /**
   *  @brief Function template for std::bind<R>.
   *  @ingroup binders
   */
  template<typename _Result, typename _Func, typename... _BoundArgs>
    inline
    typename _Bindres_helper<_Result, _Func, _BoundArgs...>::type
    bind(_Func&& __f, _BoundArgs&&... __args)
    {
      typedef _Bindres_helper<_Result, _Func, _BoundArgs...> __helper_type;
      typedef typename __helper_type::__maybe_type __maybe_type;
      typedef typename __helper_type::type __result_type;
      return __result_type(__maybe_type::__do_wrap(std::forward<_Func>(__f)),
			   std::forward<_BoundArgs>(__args)...);
    }

  template<typename _Signature>
    struct _Bind_simple;

  template<typename _Callable, typename... _Args>
    struct _Bind_simple<_Callable(_Args...)>
    {
      typedef typename result_of<_Callable(_Args...)>::type result_type;

      template<typename... _Args2, typename = typename
               enable_if< sizeof...(_Args) == sizeof...(_Args2)>::type>
        explicit
        _Bind_simple(const _Callable& __callable, _Args2&&... __args)
        : _M_bound(__callable, std::forward<_Args2>(__args)...)
        { }

      template<typename... _Args2, typename = typename
               enable_if< sizeof...(_Args) == sizeof...(_Args2)>::type>
        explicit
        _Bind_simple(_Callable&& __callable, _Args2&&... __args)
        : _M_bound(std::move(__callable), std::forward<_Args2>(__args)...)
        { }

      _Bind_simple(const _Bind_simple&) = default;
      _Bind_simple(_Bind_simple&&) = default;

      result_type
      operator()()
      {
        typedef typename _Build_index_tuple<sizeof...(_Args)>::__type _Indices;
        return _M_invoke(_Indices());
      }

    private:

      template<std::size_t... _Indices>
        typename result_of<_Callable(_Args...)>::type
        _M_invoke(_Index_tuple<_Indices...>)
        {
	  // std::bind always forwards bound arguments as lvalues,
	  // but this type can call functions which only accept rvalues.
          return std::forward<_Callable>(std::get<0>(_M_bound))(
              std::forward<_Args>(std::get<_Indices+1>(_M_bound))...);
        }

      std::tuple<_Callable, _Args...> _M_bound;
    };

  template<typename _Func, typename... _BoundArgs>
    struct _Bind_simple_helper
    {
      typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
        __maybe_type;
      typedef typename __maybe_type::type __func_type;
      typedef _Bind_simple<__func_type(typename decay<_BoundArgs>::type...)>
       	__type;
    };

  // Simplified version of std::bind for internal use, without support for
  // unbound arguments, placeholders or nested bind expressions.
  template<typename _Callable, typename... _Args>
    typename _Bind_simple_helper<_Callable, _Args...>::__type
    __bind_simple(_Callable&& __callable, _Args&&... __args)
    {
      typedef _Bind_simple_helper<_Callable, _Args...> __helper_type;
      typedef typename __helper_type::__maybe_type __maybe_type;
      typedef typename __helper_type::__type __result_type;
      return __result_type(
          __maybe_type::__do_wrap( std::forward<_Callable>(__callable)),
          std::forward<_Args>(__args)...);
    }

  /**
   *  @brief Exception class thrown when class template function's
   *  operator() is called with an empty target.
   *  @ingroup exceptions
   */
  class bad_function_call : public std::exception
  {
  public:
    virtual ~bad_function_call() noexcept;

    const char* what() const noexcept;
  };

  /**
   *  Trait identifying "location-invariant" types, meaning that the
   *  address of the object (or any of its members) will not escape.
   *  Also implies a trivial copy constructor and assignment operator.
   */
  template<typename _Tp>
    struct __is_location_invariant
    : integral_constant<bool, (is_pointer<_Tp>::value
			       || is_member_pointer<_Tp>::value)>
    { };

  class _Undefined_class;

  union _Nocopy_types
  {
    void*       _M_object;
    const void* _M_const_object;
    void (*_M_function_pointer)();
    void (_Undefined_class::*_M_member_pointer)();
  };

  union _Any_data
  {
    void*       _M_access()       { return &_M_pod_data[0]; }
    const void* _M_access() const { return &_M_pod_data[0]; }

    template<typename _Tp>
      _Tp&
      _M_access()
      { return *static_cast<_Tp*>(_M_access()); }

    template<typename _Tp>
      const _Tp&
      _M_access() const
      { return *static_cast<const _Tp*>(_M_access()); }

    _Nocopy_types _M_unused;
    char _M_pod_data[sizeof(_Nocopy_types)];
  };

  enum _Manager_operation
  {
    __get_type_info,
    __get_functor_ptr,
    __clone_functor,
    __destroy_functor
  };

  // Simple type wrapper that helps avoid annoying const problems
  // when casting between void pointers and pointers-to-pointers.
  template<typename _Tp>
    struct _Simple_type_wrapper
    {
      _Simple_type_wrapper(_Tp __value) : __value(__value) { }

      _Tp __value;
    };

  template<typename _Tp>
    struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
    : __is_location_invariant<_Tp>
    { };

  // Converts a reference to a function object into a callable
  // function object.
  template<typename _Functor>
    inline _Functor&
    __callable_functor(_Functor& __f)
    { return __f; }

  template<typename _Member, typename _Class>
    inline _Mem_fn<_Member _Class::*>
    __callable_functor(_Member _Class::* &__p)
    { return std::mem_fn(__p); }

  template<typename _Member, typename _Class>
    inline _Mem_fn<_Member _Class::*>
    __callable_functor(_Member _Class::* const &__p)
    { return std::mem_fn(__p); }

  template<typename _Member, typename _Class>
    inline _Mem_fn<_Member _Class::*>
    __callable_functor(_Member _Class::* volatile &__p)
    { return std::mem_fn(__p); }

  template<typename _Member, typename _Class>
    inline _Mem_fn<_Member _Class::*>
    __callable_functor(_Member _Class::* const volatile &__p)
    { return std::mem_fn(__p); }

  template<typename _Signature>
    class function;

  /// Base class of all polymorphic function object wrappers.
  class _Function_base
  {
  public:
    static const std::size_t _M_max_size = sizeof(_Nocopy_types);
    static const std::size_t _M_max_align = __alignof__(_Nocopy_types);

    template<typename _Functor>
      class _Base_manager
      {
      protected:
	static const bool __stored_locally =
	(__is_location_invariant<_Functor>::value
	 && sizeof(_Functor) <= _M_max_size
	 && __alignof__(_Functor) <= _M_max_align
	 && (_M_max_align % __alignof__(_Functor) == 0));

	typedef integral_constant<bool, __stored_locally> _Local_storage;

	// Retrieve a pointer to the function object
	static _Functor*
	_M_get_pointer(const _Any_data& __source)
	{
	  const _Functor* __ptr =
	    __stored_locally? std::__addressof(__source._M_access<_Functor>())
	    /* have stored a pointer */ : __source._M_access<_Functor*>();
	  return const_cast<_Functor*>(__ptr);
	}

	// Clone a location-invariant function object that fits within
	// an _Any_data structure.
	static void
	_M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
	{
	  new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
	}

	// Clone a function object that is not location-invariant or
	// that cannot fit into an _Any_data structure.
	static void
	_M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
	{
	  __dest._M_access<_Functor*>() =
	    new _Functor(*__source._M_access<_Functor*>());
	}

	// Destroying a location-invariant object may still require
	// destruction.
	static void
	_M_destroy(_Any_data& __victim, true_type)
	{
	  __victim._M_access<_Functor>().~_Functor();
	}

	// Destroying an object located on the heap.
	static void
	_M_destroy(_Any_data& __victim, false_type)
	{
	  delete __victim._M_access<_Functor*>();
	}

      public:
	static bool
	_M_manager(_Any_data& __dest, const _Any_data& __source,
		   _Manager_operation __op)
	{
	  switch (__op)
	    {
#ifdef __GXX_RTTI
	    case __get_type_info:
	      __dest._M_access<const type_info*>() = &typeid(_Functor);
	      break;
#endif
	    case __get_functor_ptr:
	      __dest._M_access<_Functor*>() = _M_get_pointer(__source);
	      break;

	    case __clone_functor:
	      _M_clone(__dest, __source, _Local_storage());
	      break;

	    case __destroy_functor:
	      _M_destroy(__dest, _Local_storage());
	      break;
	    }
	  return false;
	}

	static void
	_M_init_functor(_Any_data& __functor, _Functor&& __f)
	{ _M_init_functor(__functor, std::move(__f), _Local_storage()); }

	template<typename _Signature>
	  static bool
	  _M_not_empty_function(const function<_Signature>& __f)
	  { return static_cast<bool>(__f); }

	template<typename _Tp>
	  static bool
	  _M_not_empty_function(_Tp* const& __fp)
	  { return __fp; }

	template<typename _Class, typename _Tp>
	  static bool
	  _M_not_empty_function(_Tp _Class::* const& __mp)
	  { return __mp; }

	template<typename _Tp>
	  static bool
	  _M_not_empty_function(const _Tp&)
	  { return true; }

      private:
	static void
	_M_init_functor(_Any_data& __functor, _Functor&& __f, true_type)
	{ new (__functor._M_access()) _Functor(std::move(__f)); }

	static void
	_M_init_functor(_Any_data& __functor, _Functor&& __f, false_type)
	{ __functor._M_access<_Functor*>() = new _Functor(std::move(__f)); }
      };

    template<typename _Functor>
      class _Ref_manager : public _Base_manager<_Functor*>
      {
	typedef _Function_base::_Base_manager<_Functor*> _Base;

      public:
	static bool
	_M_manager(_Any_data& __dest, const _Any_data& __source,
		   _Manager_operation __op)
	{
	  switch (__op)
	    {
#ifdef __GXX_RTTI
	    case __get_type_info:
	      __dest._M_access<const type_info*>() = &typeid(_Functor);
	      break;
#endif
	    case __get_functor_ptr:
	      __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
	      return is_const<_Functor>::value;
	      break;

	    default:
	      _Base::_M_manager(__dest, __source, __op);
	    }
	  return false;
	}

	static void
	_M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
	{
	  _Base::_M_init_functor(__functor, std::__addressof(__f.get()));
	}
      };

    _Function_base() : _M_manager(0) { }

    ~_Function_base()
    {
      if (_M_manager)
	_M_manager(_M_functor, _M_functor, __destroy_functor);
    }


    bool _M_empty() const { return !_M_manager; }

    typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
				  _Manager_operation);

    _Any_data     _M_functor;
    _Manager_type _M_manager;
  };

  template<typename _Signature, typename _Functor>
    class _Function_handler;

  template<typename _Res, typename _Functor, typename... _ArgTypes>
    class _Function_handler<_Res(_ArgTypes...), _Functor>
    : public _Function_base::_Base_manager<_Functor>
    {
      typedef _Function_base::_Base_manager<_Functor> _Base;

    public:
      static _Res
      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
      {
	return (*_Base::_M_get_pointer(__functor))(
	    std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Functor, typename... _ArgTypes>
    class _Function_handler<void(_ArgTypes...), _Functor>
    : public _Function_base::_Base_manager<_Functor>
    {
      typedef _Function_base::_Base_manager<_Functor> _Base;

     public:
      static void
      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
      {
	(*_Base::_M_get_pointer(__functor))(
	    std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Res, typename _Functor, typename... _ArgTypes>
    class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> >
    : public _Function_base::_Ref_manager<_Functor>
    {
      typedef _Function_base::_Ref_manager<_Functor> _Base;

     public:
      static _Res
      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
      {
	return __callable_functor(**_Base::_M_get_pointer(__functor))(
	      std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Functor, typename... _ArgTypes>
    class _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> >
    : public _Function_base::_Ref_manager<_Functor>
    {
      typedef _Function_base::_Ref_manager<_Functor> _Base;

     public:
      static void
      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
      {
	__callable_functor(**_Base::_M_get_pointer(__functor))(
	    std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Class, typename _Member, typename _Res,
	   typename... _ArgTypes>
    class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
    : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
    {
      typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
	_Base;

     public:
      static _Res
      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
      {
	return std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(
	    std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Class, typename _Member, typename... _ArgTypes>
    class _Function_handler<void(_ArgTypes...), _Member _Class::*>
    : public _Function_base::_Base_manager<
		 _Simple_type_wrapper< _Member _Class::* > >
    {
      typedef _Member _Class::* _Functor;
      typedef _Simple_type_wrapper<_Functor> _Wrapper;
      typedef _Function_base::_Base_manager<_Wrapper> _Base;

    public:
      static bool
      _M_manager(_Any_data& __dest, const _Any_data& __source,
		 _Manager_operation __op)
      {
	switch (__op)
	  {
#ifdef __GXX_RTTI
	  case __get_type_info:
	    __dest._M_access<const type_info*>() = &typeid(_Functor);
	    break;
#endif
	  case __get_functor_ptr:
	    __dest._M_access<_Functor*>() =
	      &_Base::_M_get_pointer(__source)->__value;
	    break;

	  default:
	    _Base::_M_manager(__dest, __source, __op);
	  }
	return false;
      }

      static void
      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
      {
	std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(
	    std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _From, typename _To>
    using __check_func_return_type
      = __or_<is_void<_To>, is_convertible<_From, _To>>;

  /**
   *  @brief Primary class template for std::function.
   *  @ingroup functors
   *
   *  Polymorphic function wrapper.
   */
  template<typename _Res, typename... _ArgTypes>
    class function<_Res(_ArgTypes...)>
    : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
      private _Function_base
    {
      typedef _Res _Signature_type(_ArgTypes...);

      template<typename _Functor>
	using _Invoke = decltype(__callable_functor(std::declval<_Functor&>())
				 (std::declval<_ArgTypes>()...) );

      // Used so the return type convertibility checks aren't done when
      // performing overload resolution for copy construction/assignment.
      template<typename _Tp>
	using _NotSelf = __not_<is_same<_Tp, function>>;

      template<typename _Functor>
	using _Callable
	  = __and_<_NotSelf<_Functor>,
		   __check_func_return_type<_Invoke<_Functor>, _Res>>;

      template<typename _Cond, typename _Tp>
	using _Requires = typename enable_if<_Cond::value, _Tp>::type;

    public:
      typedef _Res result_type;

      // [3.7.2.1] construct/copy/destroy

      /**
       *  @brief Default construct creates an empty function call wrapper.
       *  @post @c !(bool)*this
       */
      function() noexcept
      : _Function_base() { }

      /**
       *  @brief Creates an empty function call wrapper.
       *  @post @c !(bool)*this
       */
      function(nullptr_t) noexcept
      : _Function_base() { }

      /**
       *  @brief %Function copy constructor.
       *  @param __x A %function object with identical call signature.
       *  @post @c bool(*this) == bool(__x)
       *
       *  The newly-created %function contains a copy of the target of @a
       *  __x (if it has one).
       */
      function(const function& __x);

      /**
       *  @brief %Function move constructor.
       *  @param __x A %function object rvalue with identical call signature.
       *
       *  The newly-created %function contains the target of @a __x
       *  (if it has one).
       */
      function(function&& __x) : _Function_base()
      {
	__x.swap(*this);
      }

      // TODO: needs allocator_arg_t

      /**
       *  @brief Builds a %function that targets a copy of the incoming
       *  function object.
       *  @param __f A %function object that is callable with parameters of
       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
       *  to @c Res.
       *
       *  The newly-created %function object will target a copy of 
       *  @a __f. If @a __f is @c reference_wrapper<F>, then this function
       *  object will contain a reference to the function object @c
       *  __f.get(). If @a __f is a NULL function pointer or NULL
       *  pointer-to-member, the newly-created object will be empty.
       *
       *  If @a __f is a non-NULL function pointer or an object of type @c
       *  reference_wrapper<F>, this function will not throw.
       */
      template<typename _Functor,
	       typename = _Requires<_Callable<_Functor>, void>>
	function(_Functor);

      /**
       *  @brief %Function assignment operator.
       *  @param __x A %function with identical call signature.
       *  @post @c (bool)*this == (bool)x
       *  @returns @c *this
       *
       *  The target of @a __x is copied to @c *this. If @a __x has no
       *  target, then @c *this will be empty.
       *
       *  If @a __x targets a function pointer or a reference to a function
       *  object, then this operation will not throw an %exception.
       */
      function&
      operator=(const function& __x)
      {
	function(__x).swap(*this);
	return *this;
      }

      /**
       *  @brief %Function move-assignment operator.
       *  @param __x A %function rvalue with identical call signature.
       *  @returns @c *this
       *
       *  The target of @a __x is moved to @c *this. If @a __x has no
       *  target, then @c *this will be empty.
       *
       *  If @a __x targets a function pointer or a reference to a function
       *  object, then this operation will not throw an %exception.
       */
      function&
      operator=(function&& __x)
      {
	function(std::move(__x)).swap(*this);
	return *this;
      }

      /**
       *  @brief %Function assignment to zero.
       *  @post @c !(bool)*this
       *  @returns @c *this
       *
       *  The target of @c *this is deallocated, leaving it empty.
       */
      function&
      operator=(nullptr_t)
      {
	if (_M_manager)
	  {
	    _M_manager(_M_functor, _M_functor, __destroy_functor);
	    _M_manager = 0;
	    _M_invoker = 0;
	  }
	return *this;
      }

      /**
       *  @brief %Function assignment to a new target.
       *  @param __f A %function object that is callable with parameters of
       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
       *  to @c Res.
       *  @return @c *this
       *
       *  This  %function object wrapper will target a copy of @a
       *  __f. If @a __f is @c reference_wrapper<F>, then this function
       *  object will contain a reference to the function object @c
       *  __f.get(). If @a __f is a NULL function pointer or NULL
       *  pointer-to-member, @c this object will be empty.
       *
       *  If @a __f is a non-NULL function pointer or an object of type @c
       *  reference_wrapper<F>, this function will not throw.
       */
      template<typename _Functor>
	_Requires<_Callable<typename decay<_Functor>::type>, function&>
	operator=(_Functor&& __f)
	{
	  function(std::forward<_Functor>(__f)).swap(*this);
	  return *this;
	}

      /// @overload
      template<typename _Functor>
	function&
	operator=(reference_wrapper<_Functor> __f) noexcept
	{
	  function(__f).swap(*this);
	  return *this;
	}

      // [3.7.2.2] function modifiers

      /**
       *  @brief Swap the targets of two %function objects.
       *  @param __x A %function with identical call signature.
       *
       *  Swap the targets of @c this function object and @a __f. This
       *  function will not throw an %exception.
       */
      void swap(function& __x)
      {
	std::swap(_M_functor, __x._M_functor);
	std::swap(_M_manager, __x._M_manager);
	std::swap(_M_invoker, __x._M_invoker);
      }

      // TODO: needs allocator_arg_t
      /*
      template<typename _Functor, typename _Alloc>
	void
	assign(_Functor&& __f, const _Alloc& __a)
	{
	  function(allocator_arg, __a,
		   std::forward<_Functor>(__f)).swap(*this);
	}
      */

      // [3.7.2.3] function capacity

      /**
       *  @brief Determine if the %function wrapper has a target.
       *
       *  @return @c true when this %function object contains a target,
       *  or @c false when it is empty.
       *
       *  This function will not throw an %exception.
       */
      explicit operator bool() const noexcept
      { return !_M_empty(); }

      // [3.7.2.4] function invocation

      /**
       *  @brief Invokes the function targeted by @c *this.
       *  @returns the result of the target.
       *  @throws bad_function_call when @c !(bool)*this
       *
       *  The function call operator invokes the target function object
       *  stored by @c this.
       */
      _Res operator()(_ArgTypes... __args) const;

#ifdef __GXX_RTTI
      // [3.7.2.5] function target access
      /**
       *  @brief Determine the type of the target of this function object
       *  wrapper.
       *
       *  @returns the type identifier of the target function object, or
       *  @c typeid(void) if @c !(bool)*this.
       *
       *  This function will not throw an %exception.
       */
      const type_info& target_type() const noexcept;

      /**
       *  @brief Access the stored target function object.
       *
       *  @return Returns a pointer to the stored target function object,
       *  if @c typeid(Functor).equals(target_type()); otherwise, a NULL
       *  pointer.
       *
       * This function will not throw an %exception.
       */
      template<typename _Functor>       _Functor* target() noexcept;

      /// @overload
      template<typename _Functor> const _Functor* target() const noexcept;
#endif

    private:
      typedef _Res (*_Invoker_type)(const _Any_data&, _ArgTypes...);
      _Invoker_type _M_invoker;
  };

  // Out-of-line member definitions.
  template<typename _Res, typename... _ArgTypes>
    function<_Res(_ArgTypes...)>::
    function(const function& __x)
    : _Function_base()
    {
      if (static_cast<bool>(__x))
	{
	  __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
	  _M_invoker = __x._M_invoker;
	  _M_manager = __x._M_manager;
	}
    }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor, typename>
      function<_Res(_ArgTypes...)>::
      function(_Functor __f)
      : _Function_base()
      {
	typedef _Function_handler<_Signature_type, _Functor> _My_handler;

	if (_My_handler::_M_not_empty_function(__f))
	  {
	    _My_handler::_M_init_functor(_M_functor, std::move(__f));
	    _M_invoker = &_My_handler::_M_invoke;
	    _M_manager = &_My_handler::_M_manager;
	  }
      }

  template<typename _Res, typename... _ArgTypes>
    _Res
    function<_Res(_ArgTypes...)>::
    operator()(_ArgTypes... __args) const
    {
      if (_M_empty())
	__throw_bad_function_call();
      return _M_invoker(_M_functor, std::forward<_ArgTypes>(__args)...);
    }

#ifdef __GXX_RTTI
  template<typename _Res, typename... _ArgTypes>
    const type_info&
    function<_Res(_ArgTypes...)>::
    target_type() const noexcept
    {
      if (_M_manager)
	{
	  _Any_data __typeinfo_result;
	  _M_manager(__typeinfo_result, _M_functor, __get_type_info);
	  return *__typeinfo_result._M_access<const type_info*>();
	}
      else
	return typeid(void);
    }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor>
      _Functor*
      function<_Res(_ArgTypes...)>::
      target() noexcept
      {
	if (typeid(_Functor) == target_type() && _M_manager)
	  {
	    _Any_data __ptr;
	    if (_M_manager(__ptr, _M_functor, __get_functor_ptr)
		&& !is_const<_Functor>::value)
	      return 0;
	    else
	      return __ptr._M_access<_Functor*>();
	  }
	else
	  return 0;
      }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor>
      const _Functor*
      function<_Res(_ArgTypes...)>::
      target() const noexcept
      {
	if (typeid(_Functor) == target_type() && _M_manager)
	  {
	    _Any_data __ptr;
	    _M_manager(__ptr, _M_functor, __get_functor_ptr);
	    return __ptr._M_access<const _Functor*>();
	  }
	else
	  return 0;
      }
#endif

  // [20.7.15.2.6] null pointer comparisons

  /**
   *  @brief Compares a polymorphic function object wrapper against 0
   *  (the NULL pointer).
   *  @returns @c true if the wrapper has no target, @c false otherwise
   *
   *  This function will not throw an %exception.
   */
  template<typename _Res, typename... _Args>
    inline bool
    operator==(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
    { return !static_cast<bool>(__f); }

  /// @overload
  template<typename _Res, typename... _Args>
    inline bool
    operator==(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
    { return !static_cast<bool>(__f); }

  /**
   *  @brief Compares a polymorphic function object wrapper against 0
   *  (the NULL pointer).
   *  @returns @c false if the wrapper has no target, @c true otherwise
   *
   *  This function will not throw an %exception.
   */
  template<typename _Res, typename... _Args>
    inline bool
    operator!=(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
    { return static_cast<bool>(__f); }

  /// @overload
  template<typename _Res, typename... _Args>
    inline bool
    operator!=(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
    { return static_cast<bool>(__f); }

  // [20.7.15.2.7] specialized algorithms

  /**
   *  @brief Swap the targets of two polymorphic function object wrappers.
   *
   *  This function will not throw an %exception.
   */
  template<typename _Res, typename... _Args>
    inline void
    swap(function<_Res(_Args...)>& __x, function<_Res(_Args...)>& __y)
    { __x.swap(__y); }

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif // C++11

#endif // _GLIBCXX_FUNCTIONAL

Filemanager

Name Type Size Permission Actions
backward Folder 0755
bits Folder 0755
debug Folder 0755
decimal Folder 0755
ext Folder 0755
parallel Folder 0755
profile Folder 0755
tr1 Folder 0755
tr2 Folder 0755
x86_64-redhat-linux Folder 0755
algorithm File 2.46 KB 0644
array File 9.27 KB 0644
atomic File 33.3 KB 0644
bitset File 44.55 KB 0644
cassert File 1.58 KB 0644
ccomplex File 1.29 KB 0644
cctype File 2.35 KB 0644
cerrno File 1.7 KB 0644
cfenv File 2 KB 0644
cfloat File 1.82 KB 0644
chrono File 23.04 KB 0644
cinttypes File 2.11 KB 0644
ciso646 File 1.46 KB 0644
climits File 1.84 KB 0644
clocale File 1.86 KB 0644
cmath File 41.45 KB 0644
complex File 51.29 KB 0644
complex.h File 1.43 KB 0644
condition_variable File 7.8 KB 0644
csetjmp File 1.9 KB 0644
csignal File 1.81 KB 0644
cstdalign File 1.37 KB 0644
cstdarg File 1.8 KB 0644
cstdbool File 1.37 KB 0644
cstddef File 1.57 KB 0644
cstdint File 2.12 KB 0644
cstdio File 4.18 KB 0644
cstdlib File 6.01 KB 0644
cstring File 3.05 KB 0644
ctgmath File 1.29 KB 0644
ctime File 2.08 KB 0644
cwchar File 6.34 KB 0644
cwctype File 2.73 KB 0644
cxxabi.h File 21.24 KB 0644
deque File 2.6 KB 0644
exception File 4.95 KB 0644
fenv.h File 1.97 KB 0644
forward_list File 1.54 KB 0644
fstream File 29.31 KB 0644
functional File 79.23 KB 0644
future File 41.7 KB 0644
initializer_list File 2.9 KB 0644
iomanip File 11.21 KB 0644
ios File 1.56 KB 0644
iosfwd File 6.69 KB 0644
iostream File 2.63 KB 0644
istream File 29.25 KB 0644
iterator File 2.58 KB 0644
limits File 65.68 KB 0644
list File 2.53 KB 0644
locale File 1.39 KB 0644
map File 2.5 KB 0644
memory File 2.81 KB 0644
mutex File 19.66 KB 0644
new File 4.09 KB 0644
numeric File 2.72 KB 0644
ostream File 19.19 KB 0644
queue File 2.41 KB 0644
random File 1.67 KB 0644
ratio File 18.69 KB 0644
regex File 1.82 KB 0644
scoped_allocator File 15.65 KB 0644
set File 2.5 KB 0644
sstream File 19.57 KB 0644
stack File 2.33 KB 0644
stdexcept File 4.61 KB 0644
streambuf File 28.71 KB 0644
string File 1.9 KB 0644
system_error File 10.11 KB 0644
tgmath.h File 1.33 KB 0644
thread File 7.08 KB 0644
tuple File 34.85 KB 0644
type_traits File 57.55 KB 0644
typeindex File 3.01 KB 0644
typeinfo File 7.5 KB 0644
unordered_map File 1.81 KB 0644
unordered_set File 1.81 KB 0644
utility File 5.22 KB 0644
valarray File 39.32 KB 0644
vector File 2.66 KB 0644