[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@3.144.41.127: ~ $
�
m��fc@sdZddddddddd	d
ddd
ddddddddddddgZdZddlZddlZddlZy#ddl	m
Zedd�ZWne
k
r�d �ZnXdZdZdZdZdZdZdZdZdefd!��YZdefd"��YZdefd#��YZd$efd%��YZd	eefd&��YZd'efd(��YZd)eefd*��YZd
efd+��YZd,efd-��YZ defd.��YZ!defd/��YZ"d
ee!fd0��YZ#dee!e"fd1��YZ$eeee#e!e$ee"gZ%iee6ee6ee6ee 6Z&yddl'Z'WnBe
k
r�ddl(Z(d2e)fd3��YZ*e*�Z'[([*nXye'j+WnGe,k
re-e'j.�d4�r�e'j.�`/nd5�Z0d6�Z1nCXe'j+�Z+e-e+d4�r,e+`/ne+d7�Z1e+d8�Z0['[+e2d9�Z3de)fd:��YZ4e5d;�Z6ej7j8e4�d<e)fd=��YZ9de)fd>��YZ:d?e)fd@��YZ;dAdB�Z<idCdD6dEdF6dGdH6dGdI6dJdK6dJdL6dJdM6dJdN6dAdO6dAdP6dAdQ6dAdR6dAdS6dAdT6dAdU6dAdV6dW�Z=dX�Z>dY�Z?dZ�Z@d[�ZAd\d]�ZBd^�ZCd_�ZDd`e)fda��YZEeE�jFZGd\db�ZHdc�ZIdd�ZJi	dedF6dfdH6dgdI6dhdK6didL6djdM6dkdN6dldO6dmdP6dn�ZKe5e5do�ZLe:dpdqdredsee#egdtgdudvdwdxdydJ�ZMe:dpdzdredsee#eee$gdtg�ZNe:dpdzdredsgdtg�ZOddlPZPePjQd{ePjRePjSBePjTB�jUZVePjQd|�jUZWePjQd}�jUZXePjQd~ePjR�ZY[PyddlZZ[Wne
k
rLnXe2d�Z\d��Z]d��Z^dJd��Z_d��Z`d��Zae4d��Zbe4d��Zce4d��Zde4dA�Zee4dJ�Zfe4d�ZgebecfZheid�krddljZjddl(Z(ejjke(jlei�ndS(�s�	
This is a Py2.3 implementation of decimal floating point arithmetic based on
the General Decimal Arithmetic Specification:

    http://speleotrove.com/decimal/decarith.html

and IEEE standard 854-1987:

    www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html

Decimal floating point has finite precision with arbitrarily large bounds.

The purpose of this module is to support arithmetic using familiar
"schoolhouse" rules and to avoid some of the tricky representation
issues associated with binary floating point.  The package is especially
useful for financial applications or for contexts where users have
expectations that are at odds with binary floating point (for instance,
in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
of the expected Decimal('0.00') returned by decimal floating point).

Here are some examples of using the decimal module:

>>> from decimal import *
>>> setcontext(ExtendedContext)
>>> Decimal(0)
Decimal('0')
>>> Decimal('1')
Decimal('1')
>>> Decimal('-.0123')
Decimal('-0.0123')
>>> Decimal(123456)
Decimal('123456')
>>> Decimal('123.45e12345678901234567890')
Decimal('1.2345E+12345678901234567892')
>>> Decimal('1.33') + Decimal('1.27')
Decimal('2.60')
>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
Decimal('-2.20')
>>> dig = Decimal(1)
>>> print dig / Decimal(3)
0.333333333
>>> getcontext().prec = 18
>>> print dig / Decimal(3)
0.333333333333333333
>>> print dig.sqrt()
1
>>> print Decimal(3).sqrt()
1.73205080756887729
>>> print Decimal(3) ** 123
4.85192780976896427E+58
>>> inf = Decimal(1) / Decimal(0)
>>> print inf
Infinity
>>> neginf = Decimal(-1) / Decimal(0)
>>> print neginf
-Infinity
>>> print neginf + inf
NaN
>>> print neginf * inf
-Infinity
>>> print dig / 0
Infinity
>>> getcontext().traps[DivisionByZero] = 1
>>> print dig / 0
Traceback (most recent call last):
  ...
  ...
  ...
DivisionByZero: x / 0
>>> c = Context()
>>> c.traps[InvalidOperation] = 0
>>> print c.flags[InvalidOperation]
0
>>> c.divide(Decimal(0), Decimal(0))
Decimal('NaN')
>>> c.traps[InvalidOperation] = 1
>>> print c.flags[InvalidOperation]
1
>>> c.flags[InvalidOperation] = 0
>>> print c.flags[InvalidOperation]
0
>>> print c.divide(Decimal(0), Decimal(0))
Traceback (most recent call last):
  ...
  ...
  ...
InvalidOperation: 0 / 0
>>> print c.flags[InvalidOperation]
1
>>> c.flags[InvalidOperation] = 0
>>> c.traps[InvalidOperation] = 0
>>> print c.divide(Decimal(0), Decimal(0))
NaN
>>> print c.flags[InvalidOperation]
1
>>>
tDecimaltContexttDefaultContexttBasicContexttExtendedContexttDecimalExceptiontClampedtInvalidOperationtDivisionByZerotInexacttRoundedt	SubnormaltOverflowt	Underflowt
ROUND_DOWNt
ROUND_HALF_UPtROUND_HALF_EVENt
ROUND_CEILINGtROUND_FLOORtROUND_UPtROUND_HALF_DOWNt
ROUND_05UPt
setcontextt
getcontexttlocalcontexts1.70i����N(t
namedtupletDecimalTuplessign digits exponentcGs|S(N((targs((s/usr/lib64/python2.7/decimal.pyt<lambda>�scBseZdZd�ZRS(s1Base exception class.

    Used exceptions derive from this.
    If an exception derives from another exception besides this (such as
    Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
    called if the others are present.  This isn't actually used for
    anything, though.

    handle  -- Called when context._raise_error is called and the
               trap_enabler is not set.  First argument is self, second is the
               context.  More arguments can be given, those being after
               the explanation in _raise_error (For example,
               context._raise_error(NewError, '(-x)!', self._sign) would
               call NewError().handle(context, self._sign).)

    To define a new exception, it should be sufficient to have it derive
    from DecimalException.
    cGsdS(N((tselftcontextR((s/usr/lib64/python2.7/decimal.pythandle�s(t__name__t
__module__t__doc__R(((s/usr/lib64/python2.7/decimal.pyR�scBseZdZRS(s)Exponent of a 0 changed to fit bounds.

    This occurs and signals clamped if the exponent of a result has been
    altered in order to fit the constraints of a specific concrete
    representation.  This may occur when the exponent of a zero result would
    be outside the bounds of a representation, or when a large normal
    number would have an encoded exponent that cannot be represented.  In
    this latter case, the exponent is reduced to fit and the corresponding
    number of zero digits are appended to the coefficient ("fold-down").
    (R R!R"(((s/usr/lib64/python2.7/decimal.pyR�s
cBseZdZd�ZRS(s0An invalid operation was performed.

    Various bad things cause this:

    Something creates a signaling NaN
    -INF + INF
    0 * (+-)INF
    (+-)INF / (+-)INF
    x % 0
    (+-)INF % x
    x._rescale( non-integer )
    sqrt(-x) , x > 0
    0 ** 0
    x ** (non-integer)
    x ** (+-)INF
    An operand is invalid

    The result of the operation after these is a quiet positive NaN,
    except when the cause is a signaling NaN, in which case the result is
    also a quiet NaN, but with the original sign, and an optional
    diagnostic information.
    cGs:|r6t|dj|djdt�}|j|�StS(Nitn(t_dec_from_triplet_signt_inttTruet_fix_nant_NaN(RRRtans((s/usr/lib64/python2.7/decimal.pyR�s#
(R R!R"R(((s/usr/lib64/python2.7/decimal.pyR�stConversionSyntaxcBseZdZd�ZRS(s�Trying to convert badly formed string.

    This occurs and signals invalid-operation if an string is being
    converted to a number and it does not conform to the numeric string
    syntax.  The result is [0,qNaN].
    cGstS(N(R)(RRR((s/usr/lib64/python2.7/decimal.pyR�s(R R!R"R(((s/usr/lib64/python2.7/decimal.pyR+�scBseZdZd�ZRS(s�Division by 0.

    This occurs and signals division-by-zero if division of a finite number
    by zero was attempted (during a divide-integer or divide operation, or a
    power operation with negative right-hand operand), and the dividend was
    not zero.

    The result of the operation is [sign,inf], where sign is the exclusive
    or of the signs of the operands for divide, or is 1 for an odd power of
    -0, for power.
    cGst|S(N(t_SignedInfinity(RRtsignR((s/usr/lib64/python2.7/decimal.pyR�s(R R!R"R(((s/usr/lib64/python2.7/decimal.pyR�stDivisionImpossiblecBseZdZd�ZRS(s�Cannot perform the division adequately.

    This occurs and signals invalid-operation if the integer result of a
    divide-integer or remainder operation had too many digits (would be
    longer than precision).  The result is [0,qNaN].
    cGstS(N(R)(RRR((s/usr/lib64/python2.7/decimal.pyRs(R R!R"R(((s/usr/lib64/python2.7/decimal.pyR.�stDivisionUndefinedcBseZdZd�ZRS(s�Undefined result of division.

    This occurs and signals invalid-operation if division by zero was
    attempted (during a divide-integer, divide, or remainder operation), and
    the dividend is also zero.  The result is [0,qNaN].
    cGstS(N(R)(RRR((s/usr/lib64/python2.7/decimal.pyRs(R R!R"R(((s/usr/lib64/python2.7/decimal.pyR/scBseZdZRS(s�Had to round, losing information.

    This occurs and signals inexact whenever the result of an operation is
    not exact (that is, it needed to be rounded and any discarded digits
    were non-zero), or if an overflow or underflow condition occurs.  The
    result in all cases is unchanged.

    The inexact signal may be tested (or trapped) to determine if a given
    operation (or sequence of operations) was inexact.
    (R R!R"(((s/usr/lib64/python2.7/decimal.pyR	s
tInvalidContextcBseZdZd�ZRS(s�Invalid context.  Unknown rounding, for example.

    This occurs and signals invalid-operation if an invalid context was
    detected during an operation.  This can occur if contexts are not checked
    on creation and either the precision exceeds the capability of the
    underlying concrete representation or an unknown or unsupported rounding
    was specified.  These aspects of the context need only be checked when
    the values are required to be used.  The result is [0,qNaN].
    cGstS(N(R)(RRR((s/usr/lib64/python2.7/decimal.pyR(s(R R!R"R(((s/usr/lib64/python2.7/decimal.pyR0s	cBseZdZRS(s�Number got rounded (not  necessarily changed during rounding).

    This occurs and signals rounded whenever the result of an operation is
    rounded (that is, some zero or non-zero digits were discarded from the
    coefficient), or if an overflow or underflow condition occurs.  The
    result in all cases is unchanged.

    The rounded signal may be tested (or trapped) to determine if a given
    operation (or sequence of operations) caused a loss of precision.
    (R R!R"(((s/usr/lib64/python2.7/decimal.pyR
+s
cBseZdZRS(s�Exponent < Emin before rounding.

    This occurs and signals subnormal whenever the result of a conversion or
    operation is subnormal (that is, its adjusted exponent is less than
    Emin, before any rounding).  The result in all cases is unchanged.

    The subnormal signal may be tested (or trapped) to determine if a given
    or operation (or sequence of operations) yielded a subnormal result.
    (R R!R"(((s/usr/lib64/python2.7/decimal.pyR7s	cBseZdZd�ZRS(sNumerical overflow.

    This occurs and signals overflow if the adjusted exponent of a result
    (from a conversion or from an operation that is not an attempt to divide
    by zero), after rounding, would be greater than the largest value that
    can be handled by the implementation (the value Emax).

    The result depends on the rounding mode:

    For round-half-up and round-half-even (and for round-half-down and
    round-up, if implemented), the result of the operation is [sign,inf],
    where sign is the sign of the intermediate result.  For round-down, the
    result is the largest finite number that can be represented in the
    current precision, with the sign of the intermediate result.  For
    round-ceiling, the result is the same as for round-down if the sign of
    the intermediate result is 1, or is [0,inf] otherwise.  For round-floor,
    the result is the same as for round-down if the sign of the intermediate
    result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded
    will also be raised.
    cGs�|jttttfkr#t|S|dkrk|jtkrFt|St|d|j|j	|jd�S|dkr�|jt
kr�t|St|d|j|j	|jd�SdS(Nit9i(troundingRRRRR,RR$tprectEmaxR(RRR-R((s/usr/lib64/python2.7/decimal.pyRXs(R R!R"R(((s/usr/lib64/python2.7/decimal.pyRBscBseZdZRS(sxNumerical underflow with result rounded to 0.

    This occurs and signals underflow if a result is inexact and the
    adjusted exponent of the result would be smaller (more negative) than
    the smallest value that can be handled by the implementation (the value
    Emin).  That is, the result is both inexact and subnormal.

    The result after an underflow will be a subnormal number rounded, if
    necessary, so that its exponent is not less than Etiny.  This may result
    in 0 with the sign of the intermediate result and an exponent of Etiny.

    In all cases, Inexact, Rounded, and Subnormal will also be raised.
    (R R!R"(((s/usr/lib64/python2.7/decimal.pyR
hs
t
MockThreadingcBseZed�ZRS(cCs|jtS(N(tmodulesR (Rtsys((s/usr/lib64/python2.7/decimal.pytlocal�s(R R!R7R8(((s/usr/lib64/python2.7/decimal.pyR5�st__decimal_context__cCsA|tttfkr.|j�}|j�n|tj�_dS(s%Set this thread's context to context.N(RRRtcopytclear_flagst	threadingt
currentThreadR9(R((s/usr/lib64/python2.7/decimal.pyR�s
cCsBytj�jSWn*tk
r=t�}|tj�_|SXdS(s�Returns this thread's context.

        If this thread does not yet have a context, returns
        a new context and sets this thread's context.
        New contexts are copies of DefaultContext.
        N(R<R=R9tAttributeErrorR(R((s/usr/lib64/python2.7/decimal.pyR�s
	cCs6y|jSWn$tk
r1t�}||_|SXdS(s�Returns this thread's context.

        If this thread does not yet have a context, returns
        a new context and sets this thread's context.
        New contexts are copies of DefaultContext.
        N(R9R>R(t_localR((s/usr/lib64/python2.7/decimal.pyR�s
		cCs;|tttfkr.|j�}|j�n||_dS(s%Set this thread's context to context.N(RRRR:R;R9(RR?((s/usr/lib64/python2.7/decimal.pyR�s
cCs"|dkrt�}nt|�S(s^Return a context manager for a copy of the supplied context

    Uses a copy of the current context if no context is specified
    The returned context manager creates a local decimal context
    in a with statement:
        def sin(x):
             with localcontext() as ctx:
                 ctx.prec += 2
                 # Rest of sin calculation algorithm
                 # uses a precision 2 greater than normal
             return +s  # Convert result to normal precision

         def sin(x):
             with localcontext(ExtendedContext):
                 # Rest of sin calculation algorithm
                 # uses the Extended Context from the
                 # General Decimal Arithmetic Specification
             return +s  # Convert result to normal context

    >>> setcontext(DefaultContext)
    >>> print getcontext().prec
    28
    >>> with localcontext():
    ...     ctx = getcontext()
    ...     ctx.prec += 2
    ...     print ctx.prec
    ...
    30
    >>> with localcontext(ExtendedContext):
    ...     print getcontext().prec
    ...
    9
    >>> print getcontext().prec
    28
    N(tNoneRt_ContextManager(tctx((s/usr/lib64/python2.7/decimal.pyR�s$cBsreZdZd�Zdd�d�Zd�Zee�Zd�Zd	�Z	d�d�d
�Z
d�Zd�Zd
�Z
d�d�Zd�d�Zd�d�Zd�d�Zd�d�Zd�d�Zd�d�Zd�Zd�Zd�Zed�d�Zd�d�Zd�d�Zd�d�Zed�d�Zd�d�ZeZ d�d�Z!d�d�Z"d�d �Z#e#Z$d�d!�Z%d"�Z&d�d#�Z'e%Z(e'Z)d�d$�Z*d�d%�Z+d�d&�Z,d�d'�Z-d�d(�Z.d�d)�Z/d�d*�Z0d+�Z1d,�Z2e2Z3d-�Z4e5e4�Z4d.�Z6e5e6�Z6d/�Z7d0�Z8d1�Z9d2�Z:d3�Z;d4�Z<d5�Z=d6�Z>d7�Z?d8�Z@d9�ZAd:�ZBd;�ZCeDd<e<d=e=d>e>d?e?d@e@dAeAdBeBdCeC�ZEd�dD�ZFd�dE�ZGdF�ZHd�d�dG�ZId�dH�ZJd�dI�ZKd�d�edJ�ZLdK�ZMdL�ZNdM�ZOd�d�dN�ZPd�d�dO�ZQeQZRd�dP�ZSd�dQ�ZTd�dR�ZUdS�ZVdT�ZWdU�ZXd�dV�ZYd�dW�ZZdX�Z[dY�Z\dZ�Z]d[�Z^d\�Z_d�d]�Z`d^�Zad_�Zbd`�Zcda�Zdd�db�Zedc�Zfdd�Zgde�Zhd�df�Zidg�Zjdh�Zkd�di�Zldj�Zmd�dk�Znd�dl�Zodm�Zpdn�Zqd�do�Zrd�dp�Zsd�dq�Ztd�dr�Zud�ds�Zvd�dt�Zwd�du�Zxd�dv�Zyd�dw�Zzd�dx�Z{dy�Z|d�dz�Z}d�d{�Z~d�d|�Zd}�Z�d~�Z�d�Z�d�d�d��Z�RS(�s,Floating point class for decimal arithmetic.t_expR&R%t_is_specialt0c	Cs�tj|�}t|t�r�t|j��}|dkrh|dkrTt�}n|jt	d|�S|j
d�dkr�d|_n	d|_|j
d�}|dk	r|j
d�p�d}t|j
d	�p�d
�}t
t||��|_|t|�|_t|_n�|j
d�}|dk	r{t
t|p?d
��jd
�|_|j
d�rod
|_q�d|_nd
|_d|_t|_|St|ttf�r�|dkr�d|_n	d|_d|_t
t|��|_t|_|St|t�r>|j|_|j|_|j|_|j|_|St|t�r�|j|_t
|j�|_t|j�|_t|_|St|ttf�r^t|�dkr�td��nt|dttf�o�|ddks�td��n|d|_|ddkr7d
|_|d|_t|_n#g}	xt|dD]h}
t|
ttf�r�d|
kozdknr�|	s�|
dkr�|	j|
�q�qHtd��qHW|ddkr�djt t
|	��|_|d|_t|_nbt|dttf�rNdjt t
|	p)dg��|_|d|_t|_ntd��|St|t!�r�tj"|�}|j|_|j|_|j|_|j|_|St#d|��dS(s�Create a decimal point instance.

        >>> Decimal('3.14')              # string input
        Decimal('3.14')
        >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent)
        Decimal('3.14')
        >>> Decimal(314)                 # int or long
        Decimal('314')
        >>> Decimal(Decimal(314))        # another decimal instance
        Decimal('314')
        >>> Decimal('  3.14  \n')        # leading and trailing whitespace okay
        Decimal('3.14')
        sInvalid literal for Decimal: %rR-t-iitinttfracttexpREtdiagtsignaltNR#tFistInvalid tuple size in creation of Decimal from list or tuple.  The list or tuple should have exactly three elements.s|Invalid sign.  The first value in the tuple should be an integer; either 0 for a positive number or 1 for a negative number.ii	sTThe second value in the tuple must be composed of integers in the range 0 through 9.sUThe third value in the tuple must be an integer, or one of the strings 'F', 'n', 'N'.sCannot convert %r to DecimalN(ii(R#RM($tobjectt__new__t
isinstancet
basestringt_parsertstripR@Rt_raise_errorR+tgroupR%RGtstrR&tlenRCtFalseRDtlstripR'tlongtabsRt_WorkRepR-RJtlistttuplet
ValueErrortappendtjointmaptfloatt
from_floatt	TypeError(tclstvalueRRtmtintparttfracpartRJRKtdigitstdigit((s/usr/lib64/python2.7/decimal.pyRPs�		$							)
	
1
$
cCs�t|ttf�r||�Stj|�s=tj|�rM|t|��Stjd|�dkrnd}nd}t|�j	�\}}|j
�d}t|t|d|�|�}|t
kr�|S||�SdS(s.Converts a float to a decimal number, exactly.

        Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
        Since 0.1 is not exactly representable in binary floating point, the
        value is stored as the nearest representable value which is
        0x1.999999999999ap-4.  The exact equivalent of the value in decimal
        is 0.1000000000000000055511151231257827021181583404541015625.

        >>> Decimal.from_float(0.1)
        Decimal('0.1000000000000000055511151231257827021181583404541015625')
        >>> Decimal.from_float(float('nan'))
        Decimal('NaN')
        >>> Decimal.from_float(float('inf'))
        Decimal('Infinity')
        >>> Decimal.from_float(-float('inf'))
        Decimal('-Infinity')
        >>> Decimal.from_float(-0.0)
        Decimal('-0')

        g�?iiiN(RQRGR[t_mathtisinftisnantreprtcopysignR\tas_integer_ratiot
bit_lengthR$RWR(RgtfR-R#tdtktresult((s/usr/lib64/python2.7/decimal.pyRe�s
	!cCs9|jr5|j}|dkr"dS|dkr5dSndS(srReturns whether the number is not actually one.

        0 if a number
        1 if NaN
        2 if sNaN
        R#iRMii(RDRC(RRJ((s/usr/lib64/python2.7/decimal.pyt_isnan�s		cCs$|jdkr |jrdSdSdS(syReturns whether the number is infinite

        0 if finite or not a number
        1 if +INF
        -1 if -INF
        RNi����ii(RCR%(R((s/usr/lib64/python2.7/decimal.pyt_isinfinity�s
	cCs�|j�}|dkr!t}n|j�}|s9|r�|dkrQt�}n|dkrp|jtd|�S|dkr�|jtd|�S|r�|j|�S|j|�SdS(s�Returns whether the number is not actually one.

        if self, other are sNaN, signal
        if self, other are NaN return nan
        return 0

        Done before operations.
        itsNaNiN(RyR@RYRRURR((RtotherRtself_is_nantother_is_nan((s/usr/lib64/python2.7/decimal.pyt_check_nans�s"
	

cCs�|dkrt�}n|js*|jr�|j�rI|jtd|�S|j�rh|jtd|�S|j�r�|jtd|�S|j�r�|jtd|�SndS(sCVersion of _check_nans used for the signaling comparisons
        compare_signal, __le__, __lt__, __ge__, __gt__.

        Signal InvalidOperation if either self or other is a (quiet
        or signaling) NaN.  Signaling NaNs take precedence over quiet
        NaNs.

        Return 0 if neither operand is a NaN.

        scomparison involving sNaNscomparison involving NaNiN(R@RRDtis_snanRURtis_qnan(RR|R((s/usr/lib64/python2.7/decimal.pyt_compare_check_nans�s(				
cCs|jp|jdkS(suReturn True if self is nonzero; otherwise return False.

        NaNs and infinities are considered nonzero.
        RE(RDR&(R((s/usr/lib64/python2.7/decimal.pyt__nonzero__scCsd|js|jrQ|j�}|j�}||kr:dS||krJdSdSn|sp|sadSd|jSn|s�d|jS|j|jkr�dS|j|jkr�dS|j�}|j�}||kr=|jd|j|j}|jd|j|j}||krdS||kr/d|jSd|jSn#||krTd|jSd|jSdS(s�Compare the two non-NaN decimal instances self and other.

        Returns -1 if self < other, 0 if self == other and 1
        if self > other.  This routine is for internal use only.ii����iREN(RDRzR%tadjustedR&RC(RR|tself_inft	other_inft
self_adjustedtother_adjustedtself_paddedtother_padded((s/usr/lib64/python2.7/decimal.pyt_cmp s>cCsKt|dt�}|tkr"|S|j||�r8tS|j|�dkS(Ntallow_floati(t_convert_otherR'tNotImplementedRRYR�(RR|R((s/usr/lib64/python2.7/decimal.pyt__eq__`scCsKt|dt�}|tkr"|S|j||�r8tS|j|�dkS(NR�i(R�R'R�RR�(RR|R((s/usr/lib64/python2.7/decimal.pyt__ne__hscCsQt|dt�}|tkr"|S|j||�}|r>tS|j|�dkS(NR�i(R�R'R�R�RYR�(RR|RR*((s/usr/lib64/python2.7/decimal.pyt__lt__pscCsQt|dt�}|tkr"|S|j||�}|r>tS|j|�dkS(NR�i(R�R'R�R�RYR�(RR|RR*((s/usr/lib64/python2.7/decimal.pyt__le__yscCsQt|dt�}|tkr"|S|j||�}|r>tS|j|�dkS(NR�i(R�R'R�R�RYR�(RR|RR*((s/usr/lib64/python2.7/decimal.pyt__gt__�scCsQt|dt�}|tkr"|S|j||�}|r>tS|j|�dkS(NR�i(R�R'R�R�RYR�(RR|RR*((s/usr/lib64/python2.7/decimal.pyt__ge__�scCs\t|dt�}|js*|rI|jrI|j||�}|rI|Snt|j|��S(s�Compares one to another.

        -1 => a < b
        0  => a = b
        1  => a > b
        NaN => one is NaN
        Like __cmp__, but returns Decimal instances.
        traiseit(R�R'RDRRR�(RR|RR*((s/usr/lib64/python2.7/decimal.pytcompare�s	cCs�|jrH|j�r$td��qH|j�r4dS|jrAdSdSnt|�}tj|�|krst|�S|j	�r�t
|j��}td|j|j
td|jd��St|j|jt|j�|jjd
�f�S(
sx.__hash__() <==> hash(x)s"Cannot hash a signaling NaN value.ii,��i/�i����i
ii@iREll����(RDR�Rftis_nanR%RdRRethasht
_isintegerR]tto_integral_valueR-RGtpowRJRCRXR&trstrip(Rt
self_as_floattop((s/usr/lib64/python2.7/decimal.pyt__hash__�s"
		
+	cCs(t|jttt|j��|j�S(seRepresents the number as a triple tuple.

        To show the internals exactly as they are.
        (RR%R_RcRGR&RC(R((s/usr/lib64/python2.7/decimal.pytas_tuple�scCsdt|�S(s0Represents the number as an instance of Decimal.s
Decimal('%s')(RW(R((s/usr/lib64/python2.7/decimal.pyt__repr__�sc	Cs�ddg|j}|jrc|jdkr3|dS|jdkrQ|d|jS|d|jSn|jt|j�}|jdkr�|d	kr�|}nE|s�d
}n6|jdkr�|d
dd
}n|d
dd
}|dkr
d}d
d||j}nZ|t|j�krI|jd|t|j�}d}n|j| }d
|j|}||kr|d}n7|dkr�t�}nddg|jd||}||||S(s�Return string representation of the number in scientific notation.

        Captures all of the information in the underlying representation.
        RIRFRNtInfinityR#tNaNR{ii����iREit.tetEs%+dN(R%RDRCR&RXR@Rtcapitals(	RtengRR-t
leftdigitstdotplaceRjRkRJ((s/usr/lib64/python2.7/decimal.pyt__str__�s:				
	cCs|jdtd|�S(sConvert to engineering-type string.

        Engineering notation has an exponent which is a multiple of 3, so there
        are up to 3 digits left of the decimal place.

        Same rules for when in exponential and when as a value as in __str__.
        R�R(R�R'(RR((s/usr/lib64/python2.7/decimal.pyt
to_eng_stringscCs~|jr(|jd|�}|r(|Sn|dkr@t�}n|re|jtkre|j�}n|j�}|j|�S(sRReturns a copy with the sign switched.

        Rounds, if it has reason.
        RN(	RDRR@RR2Rtcopy_abstcopy_negatet_fix(RRR*((s/usr/lib64/python2.7/decimal.pyt__neg__%s	cCs~|jr(|jd|�}|r(|Sn|dkr@t�}n|re|jtkre|j�}nt|�}|j|�S(shReturns a copy, unless it is a sNaN.

        Rounds the number (if more then precision digits)
        RN(	RDRR@RR2RR�RR�(RRR*((s/usr/lib64/python2.7/decimal.pyt__pos__;s	cCsl|s|j�S|jr8|jd|�}|r8|Sn|jrV|jd|�}n|jd|�}|S(s�Returns the absolute value of self.

        If the keyword argument 'round' is false, do not round.  The
        expression self.__abs__(round=False) is equivalent to
        self.copy_abs().
        R(R�RDRR%R�R�(RtroundRR*((s/usr/lib64/python2.7/decimal.pyt__abs__Ps
		c
Csqt|�}|tkr|S|dkr4t�}n|jsF|jr�|j||�}|rb|S|j�r�|j|jkr�|j�r�|jt	d�St
|�S|j�r�t
|�Snt|j|j�}d}|j
tkr|j|jkrd}n|r[|r[t|j|j�}|r6d}nt|d|�}|j|�}|S|s�t||j|jd�}|j||j
�}|j|�}|S|s�t||j|jd�}|j||j
�}|j|�}|St|�}t|�}t|||j�\}}t�}	|j|jkr�|j|jkrvt|d|�}|j|�}|S|j|jkr�||}}n|jdkr�d|	_|j|j|_|_qd|	_n6|jdkrd|	_d\|_|_n	d|	_|jdkr3|j|j|	_n|j|j|	_|j|	_t
|	�}|j|�}|S(sbReturns self + other.

        -INF + INF (or the reverse) cause InvalidOperation errors.
        s
-INF + INFiiREN(ii(R�R�R@RRDRRzR%RURRtminRCR2RR$R�tmaxR3t_rescaleR]t
_normalizeR-RGRJ(
RR|RR*RJtnegativezeroR-top1top2Rx((s/usr/lib64/python2.7/decimal.pyt__add__fs|

!						cCsit|�}|tkr|S|js.|jrP|j|d|�}|rP|Sn|j|j�d|�S(sReturn self - otherR(R�R�RDRR�R�(RR|RR*((s/usr/lib64/python2.7/decimal.pyt__sub__�scCs/t|�}|tkr|S|j|d|�S(sReturn other - selfR(R�R�R�(RR|R((s/usr/lib64/python2.7/decimal.pyt__rsub__�scCs�t|�}|tkr|S|dkr4t�}n|j|jA}|jsV|jr�|j||�}|rr|S|j�r�|s�|jt	d�St
|S|j�r�|s�|jt	d�St
|Sn|j|j}|s�|rt|d|�}|j
|�}|S|jdkrCt||j|�}|j
|�}|S|jdkrzt||j|�}|j
|�}|St|�}t|�}t|t|j|j�|�}|j
|�}|S(s\Return self * other.

        (+-) INF * 0 (or its reverse) raise InvalidOperation.
        s(+-)INF * 0s0 * (+-)INFREt1N(R�R�R@RR%RDRRzRURR,RCR$R�R&R]RWRG(RR|Rt
resultsignR*t	resultexpR�R�((s/usr/lib64/python2.7/decimal.pyt__mul__�sH"cCslt|�}|tkrtS|d
kr4t�}n|j|jA}|jsV|jr�|j||�}|rr|S|j�r�|j�r�|jt	d�S|j�r�t
|S|j�r�|jtd�t|d|j
��Sn|s|s�|jtd�S|jtd|�S|s1|j|j}d}nt|j�t|j�|jd}|j|j|}t|�}t|�}	|dkr�t|jd||	j�\}}
n$t|j|	jd|�\}}
|
r|d	dkrG|d7}qGnG|j|j}x4||krF|ddkrF|d}|d7}qWt|t|�|�}|j|�S(sReturn self / other.s(+-)INF/(+-)INFsDivision by infinityREs0 / 0sx / 0iii
iN(R�R�R@RR%RDRRzRURR,RR$tEtinyR/RRCRXR&R3R]tdivmodRGRWR�(RR|RR-R*RJtcoefftshiftR�R�t	remaindert	ideal_exp((s/usr/lib64/python2.7/decimal.pyt__truediv__
sP	'&$
cCs�|j|jA}|j�r(|j}nt|j|j�}|j�|j�}|sr|j�sr|dkr�t|dd�|j||j�fS||jkrot	|�}t	|�}|j
|j
kr�|jd|j
|j
9_n|jd|j
|j
9_t|j|j�\}}	|d|jkrot|t
|�d�t|jt
|	�|�fSn|jtd�}
|
|
fS(s�Return (self // other, self % other), to context.prec precision.

        Assumes that neither self nor other is a NaN, that self is not
        infinite and that other is nonzero.
        i����REii
s%quotient too large in //, % or divmod(R%RzRCR�R�R$R�R2R3R]RJRGR�RWRUR.(RR|RR-R�texpdiffR�R�tqtrR*((s/usr/lib64/python2.7/decimal.pyt_divideHs* 		cCs/t|�}|tkr|S|j|d|�S(s)Swaps self/other and returns __truediv__.R(R�R�R�(RR|R((s/usr/lib64/python2.7/decimal.pyt__rtruediv__iscCs8t|�}|tkr|S|dkr4t�}n|j||�}|rV||fS|j|jA}|j�r�|j�r�|jtd�}||fSt	||jtd�fSn|s|s�|jt
d�}||fS|jtd|�|jtd�fSn|j||�\}}|j
|�}||fS(s6
        Return (self // other, self % other)
        sdivmod(INF, INF)sINF % xsdivmod(0, 0)sx // 0sx % 0N(R�R�R@RRR%RzRURR,R/RR�R�(RR|RR*R-tquotientR�((s/usr/lib64/python2.7/decimal.pyt
__divmod__ss0


cCs/t|�}|tkr|S|j|d|�S(s(Swaps self/other and returns __divmod__.R(R�R�R�(RR|R((s/usr/lib64/python2.7/decimal.pyt__rdivmod__�scCs�t|�}|tkr|S|dkr4t�}n|j||�}|rP|S|j�rl|jtd�S|s�|r�|jtd�S|jtd�Sn|j	||�d}|j
|�}|S(s
        self % other
        sINF % xsx % 0s0 % 0iN(R�R�R@RRRzRURR/R�R�(RR|RR*R�((s/usr/lib64/python2.7/decimal.pyt__mod__�s"cCs/t|�}|tkr|S|j|d|�S(s%Swaps self/other and returns __mod__.R(R�R�R�(RR|R((s/usr/lib64/python2.7/decimal.pyt__rmod__�scCs||dkrt�}nt|dt�}|j||�}|rF|S|j�rb|jtd�S|s�|r~|jtd�S|jtd�Sn|j�r�t	|�}|j
|�St|j|j�}|s�t
|jd|�}|j
|�S|j�|j�}||jdkr)|jt�S|dkrW|j||j�}|j
|�St|�}t|�}|j|jkr�|jd|j|j9_n|jd|j|j9_t|j|j�\}}	d	|	|d@|jkr|	|j8}	|d7}n|d|jkr.|jt�S|j}
|	d
krWd|
}
|	}	nt
|
t|	�|�}|j
|�S(sI
        Remainder nearest to 0-  abs(remainder-near) <= other/2
        R�sremainder_near(infinity, x)sremainder_near(x, 0)sremainder_near(0, 0)REii����i
iiN(R@RR�R'RRzRURR/RR�R�RCR$R%R�R3R.R�R2R]RJRGR�RW(RR|RR*tideal_exponentR�R�R�R�R�R-((s/usr/lib64/python2.7/decimal.pytremainder_near�sZ			




 


	

cCs�t|�}|tkr|S|dkr4t�}n|j||�}|rP|S|j�r�|j�rx|jtd�St|j	|j	ASn|s�|r�|jt
d|j	|j	A�S|jtd�Sn|j||�dS(s
self // others
INF // INFsx // 0s0 // 0iN(
R�R�R@RRRzRURR,R%RR/R�(RR|RR*((s/usr/lib64/python2.7/decimal.pyt__floordiv__s$cCs/t|�}|tkr|S|j|d|�S(s*Swaps self/other and returns __floordiv__.R(R�R�R�(RR|R((s/usr/lib64/python2.7/decimal.pyt
__rfloordiv__'scCsU|j�r?|j�r'td��n|jr6dnd}nt|�}t|�S(sFloat representation.s%Cannot convert signaling NaN to floats-nantnan(RyR�R`R%RWRd(Rts((s/usr/lib64/python2.7/decimal.pyt	__float__.scCs�|jrB|j�r$td��qB|j�rBtd��qBnd|j}|jdkrz|t|j�d|jS|t|j|j p�d�SdS(s1Converts self to an int, truncating if necessary.sCannot convert NaN to integers"Cannot convert infinity to integeri����ii
REN(	RDRyR`Rzt
OverflowErrorR%RCRGR&(RR�((s/usr/lib64/python2.7/decimal.pyt__int__8s	
cCs|S(N((R((s/usr/lib64/python2.7/decimal.pytrealGscCs
td�S(Ni(R(R((s/usr/lib64/python2.7/decimal.pytimagKscCs|S(N((R((s/usr/lib64/python2.7/decimal.pyt	conjugateOscCstt|��S(N(tcomplexRd(R((s/usr/lib64/python2.7/decimal.pyt__complex__RscCst|j��S(sCConverts to a long.

        Equivalent to long(int(self))
        (R[R�(R((s/usr/lib64/python2.7/decimal.pyt__long__UscCsk|j}|j|j}t|�|kra|t|�|jd�}t|j||jt�St	|�S(s2Decapitate the payload of a NaN to fit the contextRE(
R&R3t_clampRXRZR$R%RCR'R(RRtpayloadtmax_payload_len((s/usr/lib64/python2.7/decimal.pyR(\s	cCs/|jr/|j�r"|j|�St|�Sn|j�}|j�}|s�|j|g|j}tt	|j
|�|�}||j
kr�|jt�t
|jd|�St|�Snt|j�|j
|j}||kr|jtd|j�}|jt�|jt�|S||k}|r4|}n|j
|kr�t|j�|j
|}	|	dkr�t
|jd|d�}d}	n|j|j}
|
||	�}|j|	 p�d}|dkrtt|�d�}t|�|jkr|d }|d7}qn||kr5|jtd|j�}nt
|j||�}|rf|rf|jt�n|r||jt�n|r�|jt�n|jt�|s�|jt�n|S|r�|jt�n|jdkr%|j
|kr%|jt�|jd|j
|}
t
|j|
|�St|�S(s�Round if it is necessary to keep self within prec precision.

        Rounds and fixes the exponent.  Does not raise on a sNaN.

        Arguments:
        self - Decimal instance
        context - context used.
        REs
above EmaxiR�ii����(RDRyR(RR�tEtopR4R�R�R�RCRURR$R%RXR&R3RR	R
t_pick_rounding_functionR2RWRGR
R(RRR�R�texp_maxtnew_exptexp_minR*tself_is_subnormalRltrounding_methodtchangedR�R�((s/usr/lib64/python2.7/decimal.pyR�hsn
	





		


cCst|j|�rdSdSdS(s(Also known as round-towards-0, truncate.ii����N(t
_all_zerosR&(RR3((s/usr/lib64/python2.7/decimal.pyt_round_down�scCs|j|�S(sRounds away from 0.(R�(RR3((s/usr/lib64/python2.7/decimal.pyt	_round_up�scCs5|j|dkrdSt|j|�r-dSdSdS(sRounds 5 up (away from 0)t56789iii����N(R&R�(RR3((s/usr/lib64/python2.7/decimal.pyt_round_half_up�s
cCs't|j|�rdS|j|�SdS(sRound 5 downi����N(t_exact_halfR&R�(RR3((s/usr/lib64/python2.7/decimal.pyt_round_half_down�scCsJt|j|�r9|dks5|j|ddkr9dS|j|�SdS(s!Round 5 to even, rest to nearest.iit02468i����N(R�R&R�(RR3((s/usr/lib64/python2.7/decimal.pyt_round_half_even�s#cCs(|jr|j|�S|j|�SdS(s(Rounds up (not away from 0 if negative.)N(R%R�(RR3((s/usr/lib64/python2.7/decimal.pyt_round_ceiling�s	
cCs(|js|j|�S|j|�SdS(s'Rounds down (not towards 0 if negative)N(R%R�(RR3((s/usr/lib64/python2.7/decimal.pyt_round_floor�s	
cCs<|r*|j|ddkr*|j|�S|j|�SdS(s)Round down unless digit prec-1 is 0 or 5.it05N(R&R�(RR3((s/usr/lib64/python2.7/decimal.pyt_round_05up�s
RRRRRRRRcCs�t|dt�}|js$|jr+|dkr<t�}n|jdkr^|jtd|�S|jdkr�|jtd|�S|jdkr�|}qm|jdkr�|}qm|jdkr�|s�|jtd�St|j	|j	A}qm|jdkrm|s|jtd�St|j	|j	A}qmnBt
|j	|j	Att|j
�t|j
��|j|j�}t|dt�}|j||�S(	s:Fused multiply-add.

        Returns self*other+third with no rounding of the intermediate
        product self*other.

        self and other are multiplied together, with no rounding of
        the result.  The third operand is then added to the result,
        and a single final rounding is performed.
        R�RMR{R#RNsINF * 0 in fmas0 * INF in fmaN(R�R'RDR@RRCRURR,R%R$RWRGR&R�(RR|tthirdRtproduct((s/usr/lib64/python2.7/decimal.pytfmas6				c
Cszt|dt�}t|dt�}|dkr<t�}n|j�}|j�}|j�}|sr|sr|r|dkr�|jtd|�S|dkr�|jtd|�S|dkr�|jtd|�S|r�|j|�S|r�|j|�S|j|�S|j�o#|j�o#|j�s6|jtd�S|dkrR|jtd�S|sh|jtd�S|j	�|j
kr�|jtd�S|r�|r�|jtd	�S|j�r�d}n	|j}t
t|��}t|j��}t|j��}	|j|td
|j|�|}x)t|	j�D]}
t|d
|�}q3Wt||	j|�}t|t|�d�S(s!Three argument version of __pow__R�iR{s@pow() 3rd argument not allowed unless all arguments are integersisApow() 2nd argument cannot be negative when 3rd argument specifiedspow() 3rd argument cannot be 0sSinsufficient precision: pow() 3rd argument must not have more than precision digitssXat least one of pow() 1st argument and 2nd argument must be nonzero ;0**0 is not definedi
N(R�R'R@RRyRURR(R�R�R3t_isevenR%R\RGR]R�R�RJtxrangeR$RW(RR|tmoduloRR}R~t
modulo_is_nanR-tbasetexponentti((s/usr/lib64/python2.7/decimal.pyt
_power_modulo=sd


							$cCsEt|�}|j|j}}x(|ddkrI|d}|d7}q"Wt|�}|j|j}}x(|ddkr�|d}|d7}qlW|dkrv||9}x(|ddkr�|d}|d7}q�W|dkr�dS|d|}	|jdkr|	}	n|j�rT|jdkrT|jt|�}
t|	|
|d�}nd}t	ddd||	|�S|jdkry|d}|dkrI||@|kr�dSt
|�d}
|d
d}|tt|��kr�dSt
|
||�}
t
|||�}|
dks(|dkr,dS|
|kr<dSd|
}n�|dkr@t
|�d
d}
td|
|�\}}|r�dSx(|ddkr�|d}|
d8}
q�W|dd}|tt|��kr�dSt
|
||�}
t
|||�}|
dks|dkr#dS|
|kr3dSd|
}ndS|d|krXdS|
|}t	dt|�|�S|dkr�|d|d}}n|dkr�ttt||���|kr�dSt
|�}|dkrttt|�|��|krdS|d|}}x<|d|dkoCdknr_|d}|d}q$Wx<|d|dko�dknr�|d}|d}qcW|dkrw|dkr�||kr�dSt||�\}}|dkr�dSdt
|�|>}xMtrQt|||d�\}}||kr8Pq||d||}qW||kog|dksndS|}n|dkr�||dt|�kr�dS||}||9}|d|kr�dSt|�}|j�r#|jdkr#|jt|�}
t||
|t|��}nd}t	d|d|||�S(shAttempt to compute self**other exactly.

        Given Decimals self and other and an integer p, attempt to
        compute an exact result for the power self**other, with p
        digits of precision.  Return None if self**other is not
        exactly representable in p digits.

        Assumes that elimination of special cases has already been
        performed: self and other must both be nonspecial; self must
        be positive and not numerically equal to 1; other must be
        nonzero.  For efficiency, other._exp should not be too large,
        so that 10**abs(other._exp) is a feasible calculation.i
iiR�REiiiii]iAiiilidN(iiii(R]RGRJR@R-R�R%RCR�R$t_nbitsRXRWt_decimal_lshift_exactR�R\R't	_log10_lb(RR|tptxtxctxetytyctyeRR�tzerost
last_digitR�temaxR�RiR#txc_bitstremtaR�R�tstr_xc((s/usr/lib64/python2.7/decimal.pyt_power_exact�s�:








//'
'
		&

 cCs�|dk	r|j|||�St|�}|tkr;|S|dkrSt�}n|j||�}|ro|S|s�|s�|jtd�StSnd}|j	dkr�|j
�r�|j�s�d}q�n|r�|jtd�S|j�}n|s |j	dkrt
|dd�St|Sn|j�rV|j	dkrCt|St
|dd�Sn|tkr-|j
�r�|j	dkr�d}n'||jkr�|j}nt|�}|j|}|d|jkrd|j}|jt�qn'|jt�|jt�d|j}t
|dd||�S|j�}|j�r{|j	dk|dkkrpt
|dd�St|Snd}t}	|j�|j�}
|dk|j	dkkr�|
tt|j��kr0t
|d|jd�}q0n>|j�}|
tt|��kr0t
|d|d�}n|dkr�|j||jd�}|dk	r�|dkr�t
d|j|j�}nt}	q�n|dkr�|j}t|�}
|
j|
j }}t|�}|j|j }}|j!dkr|}nd}x`trht"||||||�\}}|dd	tt|��|dr[Pn|d7}q	Wt
|t|�|�}n|	r�|j
�r�t|j�|jkr�|jdt|j�}t
|j	|jd||j|�}n|j#�}|j$�xt%D]}d|j&|<qW|j'|�}|jt�|j(t)r`|jt*�n|j(t+r�|jt+d
|j	�nxLt*t)ttt,fD]#}|j(|r�|j|�q�q�Wn|j'|�}|S(sHReturn self ** other [ % modulo].

        With two arguments, compute self**other.

        With three arguments, compute (self**other) % modulo.  For the
        three argument form, the following restrictions on the
        arguments hold:

         - all three arguments must be integral
         - other must be nonnegative
         - either self or other (or both) must be nonzero
         - modulo must be nonzero and must have at most p digits,
           where p is the context precision.

        If any of these restrictions is violated the InvalidOperation
        flag is raised.

        The result of pow(self, other, modulo) is identical to the
        result that would be obtained by computing (self**other) %
        modulo with unbounded precision, but is computed more
        efficiently.  It is always exact.
        s0 ** 0iis+x ** y with x negative and y not an integerRER�iii
s
above EmaxN(-R@RR�R�RRRURt_OneR%R�R�R�R$R,RzR3RGRCR
R	R�RYt_log10_exp_boundRXRWR4R�RR&R'R]RJR-t_dpowerR:R;t_signalsttrapsR�tflagsRR
RR(RR|R�RR*tresult_signt
multiplierRJtself_adjtexacttboundR�RR	R
RRR
RtextraR�R�t
newcontextt	exception((s/usr/lib64/python2.7/decimal.pyt__pow__~s�		




	
	"&





cCs/t|�}|tkr|S|j|d|�S(s%Swaps self/other and returns __pow__.R(R�R�R%(RR|R((s/usr/lib64/python2.7/decimal.pyt__rpow__V	scCs|dkrt�}n|jr@|jd|�}|r@|Sn|j|�}|j�r_|S|sxt|jdd�S|j|j	�g|j
}t|j�}|j
}x;|j|ddkr�||kr�|d7}|d8}q�Wt|j|j| |�S(s?Normalize- strip trailing 0s, change anything equal to 0 to 0e0RREiiN(R@RRDRR�RzR$R%R4R�R�RXR&RC(RRR*tdupR�tendRJ((s/usr/lib64/python2.7/decimal.pyt	normalize]	s$		&
cCs�t|dt�}|dkr*t�}n|dkrB|j}n|jsT|jr�|j||�}|rp|S|j�s�|j�r�|j�r�|j�r�t|�S|j	t
d�Sn|s|j|j|�}|j|jkr|j	t
�||kr|j	t�qn|S|j�|jko=|jknsR|j	t
d�S|s}t|jd|j�}|j|�S|j�}||jkr�|j	t
d�S||jd|jkr�|j	t
d�S|j|j|�}|j�|jkr|j	t
d�St|j�|jkr4|j	t
d�S|r_|j�|jkr_|j	t�n|j|jkr�||kr�|j	t�n|j	t
�n|j|�}|S(	s�Quantize self so its exponent is the same as that of exp.

        Similar to self._rescale(exp._exp) but with error checking.
        R�squantize with one INFs)target exponent out of bounds in quantizeREs9exponent of quantize result too large for current contextis7quantize result has too many digits for current contextN(R�R'R@RR2RDRRzRRURR�RCR
R	R�R4R$R%R�R�R3RXR&tEminR(RRJR2RtwatchexpR*R�((s/usr/lib64/python2.7/decimal.pytquantizev	sb
	

(	
				cCsbt|dt�}|js$|jrR|j�r<|j�pQ|j�oQ|j�S|j|jkS(s=Return True if self and other have the same exponent; otherwise
        return False.

        If either operand is a special value, the following rules are used:
           * return True if both operands are infinities
           * return True if both operands are NaNs
           * otherwise, return False.
        R�(R�R'RDR�tis_infiniteRC(RR|((s/usr/lib64/python2.7/decimal.pytsame_quantum�	s
	cCs|jrt|�S|s,t|jd|�S|j|kr`t|j|jd|j||�St|j�|j|}|dkr�t|jd|d�}d}n|j|}|||�}|j| p�d}|dkr�tt	|�d�}nt|j||�S(ssRescale self so that the exponent is exp, either by padding with zeros
        or by truncating digits, using the given rounding mode.

        Specials are returned without change.  This operation is
        quiet: it raises no flags, and uses no information from the
        context.

        exp = exp to scale to (an integer)
        rounding = rounding mode
        REiR�i(
RDRR$R%RCR&RXR�RWRG(RRJR2Rlt
this_functionR�R�((s/usr/lib64/python2.7/decimal.pyR��	s"	
		
cCs�|dkrtd��n|js+|r5t|�S|j|j�d||�}|j�|j�kr�|j|j�d||�}n|S(s"Round a nonzero, nonspecial Decimal to a fixed number of
        significant figures, using the given rounding mode.

        Infinities, NaNs and zeros are returned unaltered.

        This operation is quiet: it raises no flags, and uses no
        information from the context.

        is'argument should be at least 1 in _roundi(R`RDRR�R�(RtplacesR2R*((s/usr/lib64/python2.7/decimal.pyt_round�	s

 #cCs�|jr/|jd|�}|r%|St|�S|jdkrHt|�S|sat|jdd�S|dkryt�}n|dkr�|j}n|j	d|�}||kr�|j
t�n|j
t�|S(sVRounds to a nearby integer.

        If no rounding mode is specified, take the rounding mode from
        the context.  This method raises the Rounded and Inexact flags
        when appropriate.

        See also: to_integral_value, which does exactly the same as
        this method except that it doesn't raise Inexact or Rounded.
        RiREN(
RDRRRCR$R%R@RR2R�RUR	R
(RR2RR*((s/usr/lib64/python2.7/decimal.pytto_integral_exact
s$
	


cCs�|dkrt�}n|dkr0|j}n|jr_|jd|�}|rU|St|�S|jdkrxt|�S|jd|�SdS(s@Rounds to the nearest integer, without raising inexact, rounded.RiN(R@RR2RDRRRCR�(RR2RR*((s/usr/lib64/python2.7/decimal.pyR�"
s	

cCs�|d
krt�}n|jre|jd|�}|r=|S|j�re|jdkret|�Sn|s�t|jd|jd�}|j	|�S|jdkr�|j
td�S|jd}t
|�}|jd?}|jd@r
|jd}t|j�d?d}n |j}t|j�dd?}||}|dkrZ|d|9}t}	n!t|d|�\}}
|
}	||8}d|}x2tr�||}||kr�Pq�||d?}q�W|	o�|||k}	|	r|dkr�|d|}n|d|9}||7}n|d	dkr6|d7}ntdt|�|�}|j�}|jt�}
|j	|�}|
|_|S(sReturn the square root of self.RiREiissqrt(-x), x > 0i
idiN(R@RRDRRzR%RR$RCR�RURR3R]RJRGRXR&R'R�RWt
_shallow_copyt
_set_roundingRR2(RRR*R3R�R�tctlR�R R�R#R�R2((s/usr/lib64/python2.7/decimal.pytsqrt5
s`	





	
	

	


	cCst|dt�}|dkr*t�}n|js<|jr�|j�}|j�}|s`|r�|dkr�|dkr�|j|�S|dkr�|dkr�|j|�S|j||�Sn|j|�}|dkr�|j	|�}n|dkr�|}n|}|j|�S(s�Returns the larger value.

        Like max(self, other) except if one is not a number, returns
        NaN (and signals if one is sNaN).  Also rounds.
        R�iii����N(
R�R'R@RRDRyR�RR�t
compare_total(RR|RtsntonR5R*((s/usr/lib64/python2.7/decimal.pyR��
s&

		cCst|dt�}|dkr*t�}n|js<|jr�|j�}|j�}|s`|r�|dkr�|dkr�|j|�S|dkr�|dkr�|j|�S|j||�Sn|j|�}|dkr�|j	|�}n|dkr�|}n|}|j|�S(s�Returns the smaller value.

        Like min(self, other) except if one is not a number, returns
        NaN (and signals if one is sNaN).  Also rounds.
        R�iii����N(
R�R'R@RRDRyR�RR�R8(RR|RR9R:R5R*((s/usr/lib64/python2.7/decimal.pyR��
s&

	cCsD|jr
tS|jdkr tS|j|j}|dt|�kS(s"Returns whether self is an integeriRE(RDRYRCR'R&RX(Rtrest((s/usr/lib64/python2.7/decimal.pyR��
s	cCs2|s|jdkrtS|jd|jdkS(s:Returns True if self is even.  Assumes self is an integer.ii����R�(RCR'R&(R((s/usr/lib64/python2.7/decimal.pyR��
scCs5y|jt|j�dSWntk
r0dSXdS(s$Return the adjusted exponent of selfiiN(RCRXR&Rf(R((s/usr/lib64/python2.7/decimal.pyR��
s
cCs|S(s�Returns the same Decimal object.

        As we do not have different encodings for the same number, the
        received object already is in its canonical form.
        ((RR((s/usr/lib64/python2.7/decimal.pyt	canonical�
scCsAt|dt�}|j||�}|r.|S|j|d|�S(s�Compares self to the other operand numerically.

        It's pretty much like compare(), but all NaNs signal, with signaling
        NaNs taking precedence over quiet NaNs.
        R�R(R�R'R�R�(RR|RR*((s/usr/lib64/python2.7/decimal.pytcompare_signals
cCs�t|dt�}|jr)|jr)tS|jr@|jr@tS|j}|j�}|j�}|sm|rs||kr�t|j�|jf}t|j�|jf}||kr�|r�tStSn||kr�|r�tStSntS|r0|dkr�tS|dkr
tS|dkrtS|dkrptSqs|dkr@tS|dkrPtS|dkr`tS|dkrstSn||kr�tS||kr�tS|j	|j	kr�|r�tStSn|j	|j	kr�|r�tStSntS(s�Compares self to other using the abstract representations.

        This is not like the standard compare, which use their numerical
        value. Note that a total ordering is defined for all possible abstract
        representations.
        R�ii(
R�R'R%t_NegativeOneRRyRXR&t_ZeroRC(RR|R-tself_nant	other_nantself_keyt	other_key((s/usr/lib64/python2.7/decimal.pyR8sf	cCs7t|dt�}|j�}|j�}|j|�S(s�Compares self to other using abstract repr., ignoring sign.

        Like compare_total, but with operand's sign ignored and assumed to be 0.
        R�(R�R'R�R8(RR|R�to((s/usr/lib64/python2.7/decimal.pytcompare_total_magXscCstd|j|j|j�S(s'Returns a copy with the sign set to 0. i(R$R&RCRD(R((s/usr/lib64/python2.7/decimal.pyR�cscCsE|jr%td|j|j|j�Std|j|j|j�SdS(s&Returns a copy with the sign inverted.iiN(R%R$R&RCRD(R((s/usr/lib64/python2.7/decimal.pyR�gs	cCs1t|dt�}t|j|j|j|j�S(s$Returns self with the sign of other.R�(R�R'R$R%R&RCRD(RR|((s/usr/lib64/python2.7/decimal.pyt	copy_signnsc
Cs�|dkrt�}n|jd|�}|r4|S|j�dkrJtS|sTtS|j�dkrpt|�S|j}|j�}|j	dkr�|t
t|jdd��kr�t
dd|jd�}n�|j	dkr(|t
t|j�dd��kr(t
dd|j�d�}n7|j	dkrj||krjt
ddd|dd|�}n�|j	dkr�||dkr�t
dd|d|d�}n�t|�}|j|j}}|jdkr�|}nd}xZtrFt||||�\}	}
|	d	d
t
t|	��|dr9Pn|d7}q�Wt
dt|	�|
�}|j�}|jt�}|j|�}||_|S(sReturns e ** self.Ri����iiiR�RER1ii
N(R@RRRzR?RRR3R�R%RXRWR4R$R�R]RGRJR-R't_dexpR3R4RR�R2(RRR*RtadjR�R5R�R"R�RJR2((s/usr/lib64/python2.7/decimal.pyRJtsJ
	26& "
	&	cCstS(s�Return True if self is canonical; otherwise return False.

        Currently, the encoding of a Decimal instance is always
        canonical, so this method returns True for any Decimal.
        (R'(R((s/usr/lib64/python2.7/decimal.pytis_canonical�scCs|jS(s�Return True if self is finite; otherwise return False.

        A Decimal instance is considered finite if it is neither
        infinite nor a NaN.
        (RD(R((s/usr/lib64/python2.7/decimal.pyt	is_finite�scCs
|jdkS(s8Return True if self is infinite; otherwise return False.RN(RC(R((s/usr/lib64/python2.7/decimal.pyR-�scCs
|jdkS(s>Return True if self is a qNaN or sNaN; otherwise return False.R#RM(R#RM(RC(R((s/usr/lib64/python2.7/decimal.pyR��scCs?|js|rtS|dkr,t�}n|j|j�kS(s?Return True if self is a normal number; otherwise return False.N(RDRYR@RR*R�(RR((s/usr/lib64/python2.7/decimal.pyt	is_normal�s
cCs
|jdkS(s;Return True if self is a quiet NaN; otherwise return False.R#(RC(R((s/usr/lib64/python2.7/decimal.pyR��scCs
|jdkS(s8Return True if self is negative; otherwise return False.i(R%(R((s/usr/lib64/python2.7/decimal.pyt	is_signed�scCs
|jdkS(s?Return True if self is a signaling NaN; otherwise return False.RM(RC(R((s/usr/lib64/python2.7/decimal.pyR��scCs?|js|rtS|dkr,t�}n|j�|jkS(s9Return True if self is subnormal; otherwise return False.N(RDRYR@RR�R*(RR((s/usr/lib64/python2.7/decimal.pytis_subnormal�s
cCs|jo|jdkS(s6Return True if self is a zero; otherwise return False.RE(RDR&(R((s/usr/lib64/python2.7/decimal.pytis_zero�scCs�|jt|j�d}|dkrBtt|dd��dS|dkrnttd|dd��dSt|�}|j|j}}|dkr�t|d|�}t|�}t|�t|�||kS|ttd||��dS(s�Compute a lower bound for the adjusted exponent of self.ln().
        In other words, compute r such that self.ln() >= 10**r.  Assumes
        that self is finite and positive and that self != 1.
        iii
i����i����i(RCRXR&RWR]RGRJ(RRHR�R5R�tnumtden((s/usr/lib64/python2.7/decimal.pyt
_ln_exp_bound�s c
Csz|d	krt�}n|jd|�}|r4|S|s>tS|j�dkrTtS|tkrdtS|jdkr�|j	t
d�St|�}|j|j
}}|j}||j�d}xVtrt|||�}|ddttt|���|dr
Pn|d7}q�Wtt|dk�tt|��|�}|j�}|jt�}	|j|�}|	|_|S(
s/Returns the natural (base e) logarithm of self.Risln of a negative valueiii
iiN(R@RRt_NegativeInfinityRzt	_InfinityRR?R%RURR]RGRJR3RQR't_dlogRXRWR\R$R3R4RR�R2(
RRR*R�R5R�RR0R�R2((s/usr/lib64/python2.7/decimal.pytlns:			,+	cCs|jt|j�d}|dkr:tt|��dS|dkr^ttd|��dSt|�}|j|j}}|dkr�t|d|�}td|�}t|�t|�||kdStd||�}t|�||dkdS(	s�Compute a lower bound for the adjusted exponent of self.log10().
        In other words, find r such that self.log10() >= 10**r.
        Assumes that self is finite and positive and that self != 1.
        ii����i����ii
i�it231(RCRXR&RWR]RGRJ(RRHR�R5R�RORP((s/usr/lib64/python2.7/decimal.pyRBs"c
Cs�|dkrt�}n|jd|�}|r4|S|s>tS|j�dkrTtS|jdkrs|jtd�S|j	ddkr�|j	ddt
|j	�dkr�t|jt
|j	�d�}n�t
|�}|j|j}}|j}||j�d}xVtrat|||�}|dd	t
tt|���|drTPn|d
7}qWtt|dk�tt|��|�}|j�}|jt�}	|j|�}|	|_|S(s&Returns the base 10 logarithm of self.Rislog10 of a negative valueiR�REiii
iN(R@RRRRRzRSR%RURR&RXRRCR]RGRJR3RR't_dlog10RWR\R$R3R4RR�R2(
RRR*R�R5R�RR0R�R2((s/usr/lib64/python2.7/decimal.pytlog10`s:	7#		,+	cCs||jd|�}|r|S|dkr4t�}n|j�rDtS|s]|jtdd�St|j��}|j	|�S(sM Returns the exponent of the magnitude of self's MSD.

        The result is the integer which is the exponent of the magnitude
        of the most significant digit of self (as though it were truncated
        to a single digit while maintaining the value of that digit and
        without limiting the resulting exponent).
        Rslogb(0)iN(
RR@RRzRSRURRR�R�(RRR*((s/usr/lib64/python2.7/decimal.pytlogb�s	cCsJ|jdks|jdkr"tSx!|jD]}|dkr,tSq,WtS(s�Return True if self is a logical operand.

        For being logical, it must be a finite number with a sign of 0,
        an exponent of 0, and a coefficient whose digits must all be
        either 0 or 1.
        it01(R%RCRYR&R'(Rtdig((s/usr/lib64/python2.7/decimal.pyt
_islogical�scCs�|jt|�}|dkr0d||}n|dkrM||j}n|jt|�}|dkr}d||}n|dkr�||j}n||fS(NiRE(R3RX(RRtopatopbtdif((s/usr/lib64/python2.7/decimal.pyt
_fill_logical�scCs�|dkrt�}nt|dt�}|j�sD|j�rQ|jt�S|j||j|j�\}}dj	gt
||�D](\}}tt|�t|�@�^q��}t
d|jd�p�dd�S(s;Applies an 'and' operation between self and other's digits.R�RIiREN(R@RR�R'R\RURR`R&RbtzipRWRGR$RZ(RR|RR]R^RtbRx((s/usr/lib64/python2.7/decimal.pytlogical_and�s
!GcCs;|dkrt�}n|jtdd|jd�|�S(sInvert all its digits.iR�N(R@Rtlogical_xorR$R3(RR((s/usr/lib64/python2.7/decimal.pytlogical_invert�scCs�|dkrt�}nt|dt�}|j�sD|j�rQ|jt�S|j||j|j�\}}dj	gt
||�D](\}}tt|�t|�B�^q��}t
d|jd�p�dd�S(s:Applies an 'or' operation between self and other's digits.R�RIiREN(R@RR�R'R\RURR`R&RbRaRWRGR$RZ(RR|RR]R^RRbRx((s/usr/lib64/python2.7/decimal.pyt
logical_or�s
!GcCs�|dkrt�}nt|dt�}|j�sD|j�rQ|jt�S|j||j|j�\}}dj	gt
||�D](\}}tt|�t|�A�^q��}t
d|jd�p�dd�S(s;Applies an 'xor' operation between self and other's digits.R�RIiREN(R@RR�R'R\RURR`R&RbRaRWRGR$RZ(RR|RR]R^RRbRx((s/usr/lib64/python2.7/decimal.pyRd�s
!GcCst|dt�}|dkr*t�}n|js<|jr�|j�}|j�}|s`|r�|dkr�|dkr�|j|�S|dkr�|dkr�|j|�S|j||�Sn|j�j	|j��}|dkr�|j
|�}n|dkr|}n|}|j|�S(s8Compares the values numerically with their sign ignored.R�iii����N(R�R'R@RRDRyR�RR�R�R8(RR|RR9R:R5R*((s/usr/lib64/python2.7/decimal.pytmax_mag
s&

	cCst|dt�}|dkr*t�}n|js<|jr�|j�}|j�}|s`|r�|dkr�|dkr�|j|�S|dkr�|dkr�|j|�S|j||�Sn|j�j	|j��}|dkr�|j
|�}n|dkr|}n|}|j|�S(s8Compares the values numerically with their sign ignored.R�iii����N(R�R'R@RRDRyR�RR�R�R8(RR|RR9R:R5R*((s/usr/lib64/python2.7/decimal.pytmin_mag$
s&

	cCs�|dkrt�}n|jd|�}|r4|S|j�dkrJtS|j�dkrytdd|j|j��S|j�}|j	t
�|j�|j|�}||kr�|S|j
tdd|j�d�|�S(s=Returns the largest representable number smaller than itself.Ri����iiR1R�N(R@RRRzRRR$R3R�R:R4Rt_ignore_all_flagsR�R�R�(RRR*tnew_self((s/usr/lib64/python2.7/decimal.pyt
next_minusB
s"

cCs�|dkrt�}n|jd|�}|r4|S|j�dkrJtS|j�dkrytdd|j|j��S|j�}|j	t
�|j�|j|�}||kr�|S|j
tdd|j�d�|�S(s=Returns the smallest representable number larger than itself.Rii����R1iR�N(R@RRRzRSR$R3R�R:R4RRiR�R�R�(RRR*Rj((s/usr/lib64/python2.7/decimal.pyt	next_plusY
s"

cCs@t|dt�}|dkr*t�}n|j||�}|rF|S|j|�}|dkrn|j|�S|dkr�|j|�}n|j|�}|j	�r�|j
td|j�|j
t
�|j
t�nb|j�|jkr<|j
t�|j
t�|j
t
�|j
t�|s<|j
t�q<n|S(s�Returns the number closest to self, in the direction towards other.

        The result is the closest representable number to self
        (excluding self) that is in the direction towards other,
        unless both have the same value.  If the two operands are
        numerically equal, then the result is a copy of self with the
        sign set to be the same as the sign of other.
        R�ii����s Infinite result from next_towardN(R�R'R@RRR�RFRlRkRzRURR%R	R
R�R*R
RR(RR|RR*t
comparison((s/usr/lib64/python2.7/decimal.pytnext_towardp
s4	
	





cCs�|j�rdS|j�r dS|j�}|dkr<dS|dkrLdS|j�rl|jredSdSn|dkr�t�}n|jd	|�r�|jr�d
SdSn|jr�dSd
SdS(sReturns an indication of the class of self.

        The class is one of the following strings:
          sNaN
          NaN
          -Infinity
          -Normal
          -Subnormal
          -Zero
          +Zero
          +Subnormal
          +Normal
          +Infinity
        R{R�is	+Infinityi����s	-Infinitys-Zeros+ZeroRs
-Subnormals
+Subnormals-Normals+NormalN(R�R�RzRNR%R@RRM(RRtinf((s/usr/lib64/python2.7/decimal.pytnumber_class�
s,			cCs
td�S(s'Just returns 10, as this is Decimal, :)i
(R(R((s/usr/lib64/python2.7/decimal.pytradix�
scCsD|dkrt�}nt|dt�}|j||�}|rF|S|jdkrb|jt�S|jt	|�ko�|jkns�|jt�S|j
�r�t|�St	|�}|j}|jt
|�}|dkr�d||}n|dkr
||}n|||| }t|j|jd�p:d|j�S(s5Returns a rotated copy of self, value-of-other times.R�iREN(R@RR�R'RRCRURR3RGRzRR&RXR$R%RZ(RR|RR*ttorottrotdigttopadtrotated((s/usr/lib64/python2.7/decimal.pytrotate�
s,
)

		cCs|dkrt�}nt|dt�}|j||�}|rF|S|jdkrb|jt�Sd|j|j	}d|j|j	}|t
|�ko�|kns�|jt�S|j�r�t|�St
|j|j|jt
|��}|j|�}|S(s>Returns self operand after adding the second value to its exp.R�ii����iN(R@RR�R'RRCRURR4R3RGRzRR$R%R&R�(RR|RR*tliminftlimsupRv((s/usr/lib64/python2.7/decimal.pytscaleb�
s"
"

%cCsg|dkrt�}nt|dt�}|j||�}|rF|S|jdkrb|jt�S|jt	|�ko�|jkns�|jt�S|j
�r�t|�St	|�}|j}|jt
|�}|dkr�d||}n|dkr
||}n|dkr&|| }n|d|}||j}t|j|jd�p]d|j�S(s5Returns a shifted copy of self, value-of-other times.R�iREN(R@RR�R'RRCRURR3RGRzRR&RXR$R%RZ(RR|RR*RrRsRttshifted((s/usr/lib64/python2.7/decimal.pyR�s2
)

	
	cCs|jt|�ffS(N(t	__class__RW(R((s/usr/lib64/python2.7/decimal.pyt
__reduce__-scCs)t|�tkr|S|jt|��S(N(ttypeRR{RW(R((s/usr/lib64/python2.7/decimal.pyt__copy__0scCs)t|�tkr|S|jt|��S(N(R}RR{RW(Rtmemo((s/usr/lib64/python2.7/decimal.pyt__deepcopy__5scCs�|dkrt�}nt|d|�}|jrgt|j|�}t|j��}t|||�S|ddkr�ddg|j	|d<n|ddkr�t
|j|j|jd�}n|j
}|d}|dk	rn|ddkr|j|d	|�}qn|dd
kr1|j||�}qn|ddkrnt|j�|krn|j||�}qnn|r�|jdkr�|dd
kr�|jd|�}n|jt|j�}	|ddkr�|r�|dk	r�d	|}
qNd	}
nV|dd
kr|	}
n=|ddkrN|jdkrE|	d
krE|	}
qNd	}
n|
dkrud}d|
|j}n\|
t|j�kr�|jd|
t|j�}d}n |j|
 p�d}|j|
}|	|
}
t|j|||
|�S(s|Format a Decimal instance according to the given specifier.

        The specifier should be a standard format specifier, with the
        form described in PEP 3101.  Formatting types 'e', 'E', 'f',
        'F', 'g', 'G', 'n' and '%' are supported.  If the formatting
        type is omitted it defaults to 'g' or 'G', depending on the
        value of context.capitals.
        t_localeconvR}tgtGt%it	precisionteEisfF%tgGii����RERIN(R@Rt_parse_format_specifierRDt_format_signR%RWR�t
_format_alignR�R$R&RCR2R1R�RXt_format_number(Rt	specifierRR�tspecR-tbodyR2R�R�R�RjRkRJ((s/usr/lib64/python2.7/decimal.pyt
__format__<sV	"	
%&
					

(s_exps_ints_signs_is_specialN(�R R!R"t	__slots__R@RPRetclassmethodRyRzRR�R�R�R�R�R�R�R�R�R�R�R�R�RYR�R�R�R�R'R�R�t__radd__R�R�R�t__rmul__R�R�R�t__div__t__rdiv__R�R�R�R�R�R�R�R�R�t	__trunc__R�tpropertyR�R�R�R�R(R�R�R�R�R�R�R�R�R�tdictR�R�RRR%R&R)R,R.R�R1R2R�tto_integralR7R�R�R�R�R�R<R=R8RER�R�RFRJRIRJR-R�RKR�RLR�RMRNRQRURRXRYR\R`RcReRfRdRgRhRkRlRnRpRqRvRyR�R|R~R�R�(((s/usr/lib64/python2.7/decimal.pyR�s�	$		
 	!		@					4		4
V7;	!$K	
	
							f										,T	��G		"	c*"					I				K									2	3		
.*	!'			cCs7tjt�}||_||_||_||_|S(s�Create a decimal instance directly, without any validation,
    normalization (e.g. removal of leading zeros) or argument
    conversion.

    This function is for *internal use only*.
    (RORPRR%R&RCRD(R-tcoefficientRtspecialR((s/usr/lib64/python2.7/decimal.pyR$�s				RAcBs)eZdZd�Zd�Zd�ZRS(s�Context manager class to support localcontext().

      Sets a copy of the supplied context in __enter__() and restores
      the previous decimal context in __exit__()
    cCs|j�|_dS(N(R:tnew_context(RR�((s/usr/lib64/python2.7/decimal.pyt__init__�scCs t�|_t|j�|jS(N(Rt
saved_contextRR�(R((s/usr/lib64/python2.7/decimal.pyt	__enter__�s
cCst|j�dS(N(RR�(Rtttvttb((s/usr/lib64/python2.7/decimal.pyt__exit__�s(R R!R"R�R�R�(((s/usr/lib64/python2.7/decimal.pyRA�s		c
Bs�eZdZdNdNdNdNdNdNdNddNd�	Zd�Zd�Zd�Zd�ZeZ	dNd�Z
d�Zd	�Zd
�Z
dNZd�Zd�Zd
�Zdd�Zd�Zd�Zd�Zd�Zd�Zd�Zd�Zd�Zd�Zd�Zd�Zd�Zd�Zd�Z d�Z!d�Z"d �Z#d!�Z$d"�Z%d#�Z&d$�Z'd%�Z(d&�Z)d'�Z*d(�Z+d)�Z,d*�Z-d+�Z.d,�Z/d-�Z0d.�Z1d/�Z2d0�Z3d1�Z4d2�Z5d3�Z6d4�Z7d5�Z8d6�Z9d7�Z:d8�Z;d9�Z<d:�Z=d;�Z>d<�Z?d=�Z@d>�ZAdNd?�ZBd@�ZCdA�ZDdB�ZEdC�ZFdD�ZGdE�ZHdF�ZIdG�ZJdH�ZKdI�ZLdJ�ZMdK�ZNdL�ZOdM�ZPePZQRS(Os�Contains the context for a Decimal instance.

    Contains:
    prec - precision (for use in rounding, division, square roots..)
    rounding - rounding type (how you round)
    traps - If traps[exception] = 1, then the exception is
                    raised when it is caused.  Otherwise, a value is
                    substituted in.
    flags  - When an exception is caused, flags[exception] is set.
             (Whether or not the trap_enabler is set)
             Should be reset by user of Decimal instance.
    Emin -   Minimum exponent
    Emax -   Maximum exponent
    capitals -      If 1, 1*10^1 is printed as 1E+1.
                    If 0, printed as 1e1
    _clamp - If 1, change exponents if too high (Default 0)
    ic
s�y
t}
Wntk
rnX|dk	r0|n|
j|_|dk	rN|n|
j|_|dk	rl|n|
j|_|dk	r�|n|
j|_|dk	r�|n|
j|_|dk	r�|n|
j|_|	dkr�g|_	n	|	|_	�dkr|
j
j�|_
n:t�t
�sEt
�fd�tD��|_
n	�|_
�dkrrt
jtd�|_n:t�t
�s�t
�fd�tD��|_n	�|_dS(Nc3s'|]}|t|�k�fVqdS(N(RG(t.0R�(R(s/usr/lib64/python2.7/decimal.pys	<genexpr>�sic3s'|]}|t|�k�fVqdS(N(RG(R�R�(R(s/usr/lib64/python2.7/decimal.pys	<genexpr>�s(Rt	NameErrorR@R3R2R*R4R�R�t_ignored_flagsRR:RQR�RtfromkeysR(RR3R2RRR*R4R�R�R�tdc((RRs/usr/lib64/python2.7/decimal.pyR��s.

	"	"cCs�g}|jdt|��g|jj�D]\}}|r-|j^q-}|jddj|�d�g|jj�D]\}}|r||j^q|}|jddj|�d�dj|�dS(sShow the current context.saContext(prec=%(prec)d, rounding=%(rounding)s, Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)dsflags=[s, t]straps=[t)(RatvarsRtitemsR RbR(RR�RuR�tnamesR�((s/usr/lib64/python2.7/decimal.pyR��s	11cCs%x|jD]}d|j|<q
WdS(sReset all flags to zeroiN(R(Rtflag((s/usr/lib64/python2.7/decimal.pyR;�sc
CsCt|j|j|j|j|j|j|j|j|j	�	}|S(s!Returns a shallow copy from self.(
RR3R2RRR*R4R�R�R�(Rtnc((s/usr/lib64/python2.7/decimal.pyR3�sc
CsOt|j|j|jj�|jj�|j|j|j|j	|j
�	}|S(sReturns a deep copy from self.(RR3R2RR:RR*R4R�R�R�(RR�((s/usr/lib64/python2.7/decimal.pyR:scGsqtj||�}||jkr4|�j||�Sd|j|<|j|sa|�j||�S||��dS(s#Handles an error

        If the flag is in _ignored_flags, returns the default response.
        Otherwise, it sets the flag, then, if the corresponding
        trap_enabler is set, it reraises the exception.  Otherwise, it returns
        the default value after setting the flag.
        iN(t_condition_maptgetR�RRR(Rt	conditiontexplanationRterror((s/usr/lib64/python2.7/decimal.pyRUs

cCs
|jt�S(s$Ignore all flags, if they are raised(t
_ignore_flagsR(R((s/usr/lib64/python2.7/decimal.pyRi"scGs |jt|�|_t|�S(s$Ignore the flags, if they are raised(R�R^(RR((s/usr/lib64/python2.7/decimal.pyR�&scGsQ|r,t|dttf�r,|d}nx|D]}|jj|�q3WdS(s+Stop ignoring the flags, if they are raisediN(RQR_R^R�tremove(RRR�((s/usr/lib64/python2.7/decimal.pyt
_regard_flags-s

cCst|j|jd�S(s!Returns Etiny (= Emin - prec + 1)i(RGR*R3(R((s/usr/lib64/python2.7/decimal.pyR�7scCst|j|jd�S(s,Returns maximum exponent (= Emax - prec + 1)i(RGR4R3(R((s/usr/lib64/python2.7/decimal.pyR�;scCs|j}||_|S(s�Sets the rounding type.

        Sets the rounding type, and returns the current (previous)
        rounding type.  Often used like:

        context = context.copy()
        # so you don't change the calling context
        # if an error occurs in the middle.
        rounding = context._set_rounding(ROUND_UP)
        val = self.__sub__(other, context=context)
        context._set_rounding(rounding)

        This will make it round up for that operation.
        (R2(RR}R2((s/usr/lib64/python2.7/decimal.pyR4?s		REcCs�t|t�r1||j�kr1|jtd�St|d|�}|j�r~t|j�|j	|j
kr~|jtd�S|j|�S(s�Creates a new Decimal instance but using self as context.

        This method implements the to-number operation of the
        IBM Decimal specification.s/no trailing or leading whitespace is permitted.Rsdiagnostic info too long in NaN(RQRRRTRUR+RRyRXR&R3R�R�(RRORv((s/usr/lib64/python2.7/decimal.pytcreate_decimalRs!	+	cCstj|�}|j|�S(s�Creates a new Decimal instance from a float but rounding using self
        as the context.

        >>> context = Context(prec=5, rounding=ROUND_DOWN)
        >>> context.create_decimal_from_float(3.1415926535897932)
        Decimal('3.1415')
        >>> context = Context(prec=5, traps=[Inexact])
        >>> context.create_decimal_from_float(3.1415926535897932)
        Traceback (most recent call last):
            ...
        Inexact: None

        (RReR�(RRuRv((s/usr/lib64/python2.7/decimal.pytcreate_decimal_from_floatcscCs"t|dt�}|jd|�S(s[Returns the absolute value of the operand.

        If the operand is negative, the result is the same as using the minus
        operation on the operand.  Otherwise, the result is the same as using
        the plus operation on the operand.

        >>> ExtendedContext.abs(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.abs(Decimal('-100'))
        Decimal('100')
        >>> ExtendedContext.abs(Decimal('101.5'))
        Decimal('101.5')
        >>> ExtendedContext.abs(Decimal('-101.5'))
        Decimal('101.5')
        >>> ExtendedContext.abs(-1)
        Decimal('1')
        R�R(R�R'R�(RR((s/usr/lib64/python2.7/decimal.pyR\uscCsNt|dt�}|j|d|�}|tkrFtd|��n|SdS(s�Return the sum of the two operands.

        >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
        Decimal('19.00')
        >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
        Decimal('1.02E+4')
        >>> ExtendedContext.add(1, Decimal(2))
        Decimal('3')
        >>> ExtendedContext.add(Decimal(8), 5)
        Decimal('13')
        >>> ExtendedContext.add(5, 5)
        Decimal('10')
        R�RsUnable to convert %s to DecimalN(R�R'R�R�Rf(RRRbR�((s/usr/lib64/python2.7/decimal.pytadd�s
cCst|j|��S(N(RWR�(RR((s/usr/lib64/python2.7/decimal.pyt_apply�scCs|jd|�S(s�Returns the same Decimal object.

        As we do not have different encodings for the same number, the
        received object already is in its canonical form.

        >>> ExtendedContext.canonical(Decimal('2.50'))
        Decimal('2.50')
        R(R<(RR((s/usr/lib64/python2.7/decimal.pyR<�s	cCs%t|dt�}|j|d|�S(s�Compares values numerically.

        If the signs of the operands differ, a value representing each operand
        ('-1' if the operand is less than zero, '0' if the operand is zero or
        negative zero, or '1' if the operand is greater than zero) is used in
        place of that operand for the comparison instead of the actual
        operand.

        The comparison is then effected by subtracting the second operand from
        the first and then returning a value according to the result of the
        subtraction: '-1' if the result is less than zero, '0' if the result is
        zero or negative zero, or '1' if the result is greater than zero.

        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
        Decimal('-1')
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
        Decimal('0')
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
        Decimal('0')
        >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
        Decimal('1')
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
        Decimal('1')
        >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
        Decimal('-1')
        >>> ExtendedContext.compare(1, 2)
        Decimal('-1')
        >>> ExtendedContext.compare(Decimal(1), 2)
        Decimal('-1')
        >>> ExtendedContext.compare(1, Decimal(2))
        Decimal('-1')
        R�R(R�R'R�(RRRb((s/usr/lib64/python2.7/decimal.pyR��s!cCs%t|dt�}|j|d|�S(sCompares the values of the two operands numerically.

        It's pretty much like compare(), but all NaNs signal, with signaling
        NaNs taking precedence over quiet NaNs.

        >>> c = ExtendedContext
        >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
        Decimal('-1')
        >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
        Decimal('0')
        >>> c.flags[InvalidOperation] = 0
        >>> print c.flags[InvalidOperation]
        0
        >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
        Decimal('NaN')
        >>> print c.flags[InvalidOperation]
        1
        >>> c.flags[InvalidOperation] = 0
        >>> print c.flags[InvalidOperation]
        0
        >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
        Decimal('NaN')
        >>> print c.flags[InvalidOperation]
        1
        >>> c.compare_signal(-1, 2)
        Decimal('-1')
        >>> c.compare_signal(Decimal(-1), 2)
        Decimal('-1')
        >>> c.compare_signal(-1, Decimal(2))
        Decimal('-1')
        R�R(R�R'R=(RRRb((s/usr/lib64/python2.7/decimal.pyR=�s cCst|dt�}|j|�S(s+Compares two operands using their abstract representation.

        This is not like the standard compare, which use their numerical
        value. Note that a total ordering is defined for all possible abstract
        representations.

        >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
        Decimal('0')
        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300'))
        Decimal('1')
        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(1, 2)
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal(1), 2)
        Decimal('-1')
        >>> ExtendedContext.compare_total(1, Decimal(2))
        Decimal('-1')
        R�(R�R'R8(RRRb((s/usr/lib64/python2.7/decimal.pyR8�scCst|dt�}|j|�S(s�Compares two operands using their abstract representation ignoring sign.

        Like compare_total, but with operand's sign ignored and assumed to be 0.
        R�(R�R'RE(RRRb((s/usr/lib64/python2.7/decimal.pyREscCst|dt�}|j�S(sReturns a copy of the operand with the sign set to 0.

        >>> ExtendedContext.copy_abs(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.copy_abs(Decimal('-100'))
        Decimal('100')
        >>> ExtendedContext.copy_abs(-1)
        Decimal('1')
        R�(R�R'R�(RR((s/usr/lib64/python2.7/decimal.pyR�s
cCst|dt�}t|�S(sReturns a copy of the decimal object.

        >>> ExtendedContext.copy_decimal(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
        Decimal('-1.00')
        >>> ExtendedContext.copy_decimal(1)
        Decimal('1')
        R�(R�R'R(RR((s/usr/lib64/python2.7/decimal.pytcopy_decimal&s
cCst|dt�}|j�S(s(Returns a copy of the operand with the sign inverted.

        >>> ExtendedContext.copy_negate(Decimal('101.5'))
        Decimal('-101.5')
        >>> ExtendedContext.copy_negate(Decimal('-101.5'))
        Decimal('101.5')
        >>> ExtendedContext.copy_negate(1)
        Decimal('-1')
        R�(R�R'R�(RR((s/usr/lib64/python2.7/decimal.pyR�3s
cCst|dt�}|j|�S(sCopies the second operand's sign to the first one.

        In detail, it returns a copy of the first operand with the sign
        equal to the sign of the second operand.

        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
        Decimal('1.50')
        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
        Decimal('1.50')
        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
        Decimal('-1.50')
        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
        Decimal('-1.50')
        >>> ExtendedContext.copy_sign(1, -2)
        Decimal('-1')
        >>> ExtendedContext.copy_sign(Decimal(1), -2)
        Decimal('-1')
        >>> ExtendedContext.copy_sign(1, Decimal(-2))
        Decimal('-1')
        R�(R�R'RF(RRRb((s/usr/lib64/python2.7/decimal.pyRF@scCsNt|dt�}|j|d|�}|tkrFtd|��n|SdS(s�Decimal division in a specified context.

        >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
        Decimal('0.333333333')
        >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
        Decimal('0.666666667')
        >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
        Decimal('2.5')
        >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
        Decimal('0.1')
        >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
        Decimal('1')
        >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
        Decimal('4.00')
        >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
        Decimal('1.20')
        >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
        Decimal('10')
        >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
        Decimal('1000')
        >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
        Decimal('1.20E+6')
        >>> ExtendedContext.divide(5, 5)
        Decimal('1')
        >>> ExtendedContext.divide(Decimal(5), 5)
        Decimal('1')
        >>> ExtendedContext.divide(5, Decimal(5))
        Decimal('1')
        R�RsUnable to convert %s to DecimalN(R�R'R�R�Rf(RRRbR�((s/usr/lib64/python2.7/decimal.pytdivideXs
cCsNt|dt�}|j|d|�}|tkrFtd|��n|SdS(s/Divides two numbers and returns the integer part of the result.

        >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
        Decimal('0')
        >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
        Decimal('3')
        >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
        Decimal('3')
        >>> ExtendedContext.divide_int(10, 3)
        Decimal('3')
        >>> ExtendedContext.divide_int(Decimal(10), 3)
        Decimal('3')
        >>> ExtendedContext.divide_int(10, Decimal(3))
        Decimal('3')
        R�RsUnable to convert %s to DecimalN(R�R'R�R�Rf(RRRbR�((s/usr/lib64/python2.7/decimal.pyt
divide_int}s
cCsNt|dt�}|j|d|�}|tkrFtd|��n|SdS(s�Return (a // b, a % b).

        >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
        (Decimal('2'), Decimal('2'))
        >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
        (Decimal('2'), Decimal('0'))
        >>> ExtendedContext.divmod(8, 4)
        (Decimal('2'), Decimal('0'))
        >>> ExtendedContext.divmod(Decimal(8), 4)
        (Decimal('2'), Decimal('0'))
        >>> ExtendedContext.divmod(8, Decimal(4))
        (Decimal('2'), Decimal('0'))
        R�RsUnable to convert %s to DecimalN(R�R'R�R�Rf(RRRbR�((s/usr/lib64/python2.7/decimal.pyR��s
cCs"t|dt�}|jd|�S(s#Returns e ** a.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.exp(Decimal('-Infinity'))
        Decimal('0')
        >>> c.exp(Decimal('-1'))
        Decimal('0.367879441')
        >>> c.exp(Decimal('0'))
        Decimal('1')
        >>> c.exp(Decimal('1'))
        Decimal('2.71828183')
        >>> c.exp(Decimal('0.693147181'))
        Decimal('2.00000000')
        >>> c.exp(Decimal('+Infinity'))
        Decimal('Infinity')
        >>> c.exp(10)
        Decimal('22026.4658')
        R�R(R�R'RJ(RR((s/usr/lib64/python2.7/decimal.pyRJ�scCs(t|dt�}|j||d|�S(sReturns a multiplied by b, plus c.

        The first two operands are multiplied together, using multiply,
        the third operand is then added to the result of that
        multiplication, using add, all with only one final rounding.

        >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
        Decimal('22')
        >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
        Decimal('-8')
        >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
        Decimal('1.38435736E+12')
        >>> ExtendedContext.fma(1, 3, 4)
        Decimal('7')
        >>> ExtendedContext.fma(1, Decimal(3), 4)
        Decimal('7')
        >>> ExtendedContext.fma(1, 3, Decimal(4))
        Decimal('7')
        R�R(R�R'R�(RRRbR5((s/usr/lib64/python2.7/decimal.pyR��scCs
|j�S(sReturn True if the operand is canonical; otherwise return False.

        Currently, the encoding of a Decimal instance is always
        canonical, so this method returns True for any Decimal.

        >>> ExtendedContext.is_canonical(Decimal('2.50'))
        True
        (RI(RR((s/usr/lib64/python2.7/decimal.pyRI�s	cCst|dt�}|j�S(s,Return True if the operand is finite; otherwise return False.

        A Decimal instance is considered finite if it is neither
        infinite nor a NaN.

        >>> ExtendedContext.is_finite(Decimal('2.50'))
        True
        >>> ExtendedContext.is_finite(Decimal('-0.3'))
        True
        >>> ExtendedContext.is_finite(Decimal('0'))
        True
        >>> ExtendedContext.is_finite(Decimal('Inf'))
        False
        >>> ExtendedContext.is_finite(Decimal('NaN'))
        False
        >>> ExtendedContext.is_finite(1)
        True
        R�(R�R'RJ(RR((s/usr/lib64/python2.7/decimal.pyRJ�scCst|dt�}|j�S(sUReturn True if the operand is infinite; otherwise return False.

        >>> ExtendedContext.is_infinite(Decimal('2.50'))
        False
        >>> ExtendedContext.is_infinite(Decimal('-Inf'))
        True
        >>> ExtendedContext.is_infinite(Decimal('NaN'))
        False
        >>> ExtendedContext.is_infinite(1)
        False
        R�(R�R'R-(RR((s/usr/lib64/python2.7/decimal.pyR-�scCst|dt�}|j�S(sOReturn True if the operand is a qNaN or sNaN;
        otherwise return False.

        >>> ExtendedContext.is_nan(Decimal('2.50'))
        False
        >>> ExtendedContext.is_nan(Decimal('NaN'))
        True
        >>> ExtendedContext.is_nan(Decimal('-sNaN'))
        True
        >>> ExtendedContext.is_nan(1)
        False
        R�(R�R'R�(RR((s/usr/lib64/python2.7/decimal.pyR�s
cCs"t|dt�}|jd|�S(s�Return True if the operand is a normal number;
        otherwise return False.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.is_normal(Decimal('2.50'))
        True
        >>> c.is_normal(Decimal('0.1E-999'))
        False
        >>> c.is_normal(Decimal('0.00'))
        False
        >>> c.is_normal(Decimal('-Inf'))
        False
        >>> c.is_normal(Decimal('NaN'))
        False
        >>> c.is_normal(1)
        True
        R�R(R�R'RK(RR((s/usr/lib64/python2.7/decimal.pyRKscCst|dt�}|j�S(sHReturn True if the operand is a quiet NaN; otherwise return False.

        >>> ExtendedContext.is_qnan(Decimal('2.50'))
        False
        >>> ExtendedContext.is_qnan(Decimal('NaN'))
        True
        >>> ExtendedContext.is_qnan(Decimal('sNaN'))
        False
        >>> ExtendedContext.is_qnan(1)
        False
        R�(R�R'R�(RR((s/usr/lib64/python2.7/decimal.pyR�/scCst|dt�}|j�S(s�Return True if the operand is negative; otherwise return False.

        >>> ExtendedContext.is_signed(Decimal('2.50'))
        False
        >>> ExtendedContext.is_signed(Decimal('-12'))
        True
        >>> ExtendedContext.is_signed(Decimal('-0'))
        True
        >>> ExtendedContext.is_signed(8)
        False
        >>> ExtendedContext.is_signed(-8)
        True
        R�(R�R'RL(RR((s/usr/lib64/python2.7/decimal.pyRL>scCst|dt�}|j�S(sTReturn True if the operand is a signaling NaN;
        otherwise return False.

        >>> ExtendedContext.is_snan(Decimal('2.50'))
        False
        >>> ExtendedContext.is_snan(Decimal('NaN'))
        False
        >>> ExtendedContext.is_snan(Decimal('sNaN'))
        True
        >>> ExtendedContext.is_snan(1)
        False
        R�(R�R'R�(RR((s/usr/lib64/python2.7/decimal.pyR�Os
cCs"t|dt�}|jd|�S(s�Return True if the operand is subnormal; otherwise return False.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.is_subnormal(Decimal('2.50'))
        False
        >>> c.is_subnormal(Decimal('0.1E-999'))
        True
        >>> c.is_subnormal(Decimal('0.00'))
        False
        >>> c.is_subnormal(Decimal('-Inf'))
        False
        >>> c.is_subnormal(Decimal('NaN'))
        False
        >>> c.is_subnormal(1)
        False
        R�R(R�R'RM(RR((s/usr/lib64/python2.7/decimal.pyRM_scCst|dt�}|j�S(suReturn True if the operand is a zero; otherwise return False.

        >>> ExtendedContext.is_zero(Decimal('0'))
        True
        >>> ExtendedContext.is_zero(Decimal('2.50'))
        False
        >>> ExtendedContext.is_zero(Decimal('-0E+2'))
        True
        >>> ExtendedContext.is_zero(1)
        False
        >>> ExtendedContext.is_zero(0)
        True
        R�(R�R'RN(RR((s/usr/lib64/python2.7/decimal.pyRNuscCs"t|dt�}|jd|�S(s�Returns the natural (base e) logarithm of the operand.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.ln(Decimal('0'))
        Decimal('-Infinity')
        >>> c.ln(Decimal('1.000'))
        Decimal('0')
        >>> c.ln(Decimal('2.71828183'))
        Decimal('1.00000000')
        >>> c.ln(Decimal('10'))
        Decimal('2.30258509')
        >>> c.ln(Decimal('+Infinity'))
        Decimal('Infinity')
        >>> c.ln(1)
        Decimal('0')
        R�R(R�R'RU(RR((s/usr/lib64/python2.7/decimal.pyRU�scCs"t|dt�}|jd|�S(s�Returns the base 10 logarithm of the operand.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.log10(Decimal('0'))
        Decimal('-Infinity')
        >>> c.log10(Decimal('0.001'))
        Decimal('-3')
        >>> c.log10(Decimal('1.000'))
        Decimal('0')
        >>> c.log10(Decimal('2'))
        Decimal('0.301029996')
        >>> c.log10(Decimal('10'))
        Decimal('1')
        >>> c.log10(Decimal('70'))
        Decimal('1.84509804')
        >>> c.log10(Decimal('+Infinity'))
        Decimal('Infinity')
        >>> c.log10(0)
        Decimal('-Infinity')
        >>> c.log10(1)
        Decimal('0')
        R�R(R�R'RX(RR((s/usr/lib64/python2.7/decimal.pyRX�scCs"t|dt�}|jd|�S(s4 Returns the exponent of the magnitude of the operand's MSD.

        The result is the integer which is the exponent of the magnitude
        of the most significant digit of the operand (as though the
        operand were truncated to a single digit while maintaining the
        value of that digit and without limiting the resulting exponent).

        >>> ExtendedContext.logb(Decimal('250'))
        Decimal('2')
        >>> ExtendedContext.logb(Decimal('2.50'))
        Decimal('0')
        >>> ExtendedContext.logb(Decimal('0.03'))
        Decimal('-2')
        >>> ExtendedContext.logb(Decimal('0'))
        Decimal('-Infinity')
        >>> ExtendedContext.logb(1)
        Decimal('0')
        >>> ExtendedContext.logb(10)
        Decimal('1')
        >>> ExtendedContext.logb(100)
        Decimal('2')
        R�R(R�R'RY(RR((s/usr/lib64/python2.7/decimal.pyRY�scCs%t|dt�}|j|d|�S(s�Applies the logical operation 'and' between each operand's digits.

        The operands must be both logical numbers.

        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
        Decimal('0')
        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
        Decimal('1000')
        >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
        Decimal('10')
        >>> ExtendedContext.logical_and(110, 1101)
        Decimal('100')
        >>> ExtendedContext.logical_and(Decimal(110), 1101)
        Decimal('100')
        >>> ExtendedContext.logical_and(110, Decimal(1101))
        Decimal('100')
        R�R(R�R'Rc(RRRb((s/usr/lib64/python2.7/decimal.pyRc�scCs"t|dt�}|jd|�S(sInvert all the digits in the operand.

        The operand must be a logical number.

        >>> ExtendedContext.logical_invert(Decimal('0'))
        Decimal('111111111')
        >>> ExtendedContext.logical_invert(Decimal('1'))
        Decimal('111111110')
        >>> ExtendedContext.logical_invert(Decimal('111111111'))
        Decimal('0')
        >>> ExtendedContext.logical_invert(Decimal('101010101'))
        Decimal('10101010')
        >>> ExtendedContext.logical_invert(1101)
        Decimal('111110010')
        R�R(R�R'Re(RR((s/usr/lib64/python2.7/decimal.pyRe�scCs%t|dt�}|j|d|�S(s�Applies the logical operation 'or' between each operand's digits.

        The operands must be both logical numbers.

        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
        Decimal('1')
        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
        Decimal('1110')
        >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
        Decimal('1110')
        >>> ExtendedContext.logical_or(110, 1101)
        Decimal('1111')
        >>> ExtendedContext.logical_or(Decimal(110), 1101)
        Decimal('1111')
        >>> ExtendedContext.logical_or(110, Decimal(1101))
        Decimal('1111')
        R�R(R�R'Rf(RRRb((s/usr/lib64/python2.7/decimal.pyRfscCs%t|dt�}|j|d|�S(s�Applies the logical operation 'xor' between each operand's digits.

        The operands must be both logical numbers.

        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
        Decimal('1')
        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
        Decimal('0')
        >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
        Decimal('110')
        >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
        Decimal('1101')
        >>> ExtendedContext.logical_xor(110, 1101)
        Decimal('1011')
        >>> ExtendedContext.logical_xor(Decimal(110), 1101)
        Decimal('1011')
        >>> ExtendedContext.logical_xor(110, Decimal(1101))
        Decimal('1011')
        R�R(R�R'Rd(RRRb((s/usr/lib64/python2.7/decimal.pyRdscCs%t|dt�}|j|d|�S(s�max compares two values numerically and returns the maximum.

        If either operand is a NaN then the general rules apply.
        Otherwise, the operands are compared as though by the compare
        operation.  If they are numerically equal then the left-hand operand
        is chosen as the result.  Otherwise the maximum (closer to positive
        infinity) of the two operands is chosen as the result.

        >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
        Decimal('3')
        >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
        Decimal('3')
        >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
        Decimal('7')
        >>> ExtendedContext.max(1, 2)
        Decimal('2')
        >>> ExtendedContext.max(Decimal(1), 2)
        Decimal('2')
        >>> ExtendedContext.max(1, Decimal(2))
        Decimal('2')
        R�R(R�R'R�(RRRb((s/usr/lib64/python2.7/decimal.pyR�6scCs%t|dt�}|j|d|�S(s�Compares the values numerically with their sign ignored.

        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN'))
        Decimal('7')
        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10'))
        Decimal('-10')
        >>> ExtendedContext.max_mag(1, -2)
        Decimal('-2')
        >>> ExtendedContext.max_mag(Decimal(1), -2)
        Decimal('-2')
        >>> ExtendedContext.max_mag(1, Decimal(-2))
        Decimal('-2')
        R�R(R�R'Rg(RRRb((s/usr/lib64/python2.7/decimal.pyRgQscCs%t|dt�}|j|d|�S(s�min compares two values numerically and returns the minimum.

        If either operand is a NaN then the general rules apply.
        Otherwise, the operands are compared as though by the compare
        operation.  If they are numerically equal then the left-hand operand
        is chosen as the result.  Otherwise the minimum (closer to negative
        infinity) of the two operands is chosen as the result.

        >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
        Decimal('2')
        >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
        Decimal('-10')
        >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
        Decimal('1.0')
        >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
        Decimal('7')
        >>> ExtendedContext.min(1, 2)
        Decimal('1')
        >>> ExtendedContext.min(Decimal(1), 2)
        Decimal('1')
        >>> ExtendedContext.min(1, Decimal(29))
        Decimal('1')
        R�R(R�R'R�(RRRb((s/usr/lib64/python2.7/decimal.pyR�bscCs%t|dt�}|j|d|�S(s�Compares the values numerically with their sign ignored.

        >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2'))
        Decimal('-2')
        >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN'))
        Decimal('-3')
        >>> ExtendedContext.min_mag(1, -2)
        Decimal('1')
        >>> ExtendedContext.min_mag(Decimal(1), -2)
        Decimal('1')
        >>> ExtendedContext.min_mag(1, Decimal(-2))
        Decimal('1')
        R�R(R�R'Rh(RRRb((s/usr/lib64/python2.7/decimal.pyRh}scCs"t|dt�}|jd|�S(s�Minus corresponds to unary prefix minus in Python.

        The operation is evaluated using the same rules as subtract; the
        operation minus(a) is calculated as subtract('0', a) where the '0'
        has the same exponent as the operand.

        >>> ExtendedContext.minus(Decimal('1.3'))
        Decimal('-1.3')
        >>> ExtendedContext.minus(Decimal('-1.3'))
        Decimal('1.3')
        >>> ExtendedContext.minus(1)
        Decimal('-1')
        R�R(R�R'R�(RR((s/usr/lib64/python2.7/decimal.pytminus�scCsNt|dt�}|j|d|�}|tkrFtd|��n|SdS(s�multiply multiplies two operands.

        If either operand is a special value then the general rules apply.
        Otherwise, the operands are multiplied together
        ('long multiplication'), resulting in a number which may be as long as
        the sum of the lengths of the two operands.

        >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
        Decimal('3.60')
        >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
        Decimal('21')
        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
        Decimal('0.72')
        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
        Decimal('-0.0')
        >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
        Decimal('4.28135971E+11')
        >>> ExtendedContext.multiply(7, 7)
        Decimal('49')
        >>> ExtendedContext.multiply(Decimal(7), 7)
        Decimal('49')
        >>> ExtendedContext.multiply(7, Decimal(7))
        Decimal('49')
        R�RsUnable to convert %s to DecimalN(R�R'R�R�Rf(RRRbR�((s/usr/lib64/python2.7/decimal.pytmultiply�s
cCs"t|dt�}|jd|�S(s"Returns the largest representable number smaller than a.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> ExtendedContext.next_minus(Decimal('1'))
        Decimal('0.999999999')
        >>> c.next_minus(Decimal('1E-1007'))
        Decimal('0E-1007')
        >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
        Decimal('-1.00000004')
        >>> c.next_minus(Decimal('Infinity'))
        Decimal('9.99999999E+999')
        >>> c.next_minus(1)
        Decimal('0.999999999')
        R�R(R�R'Rk(RR((s/usr/lib64/python2.7/decimal.pyRk�scCs"t|dt�}|jd|�S(sReturns the smallest representable number larger than a.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> ExtendedContext.next_plus(Decimal('1'))
        Decimal('1.00000001')
        >>> c.next_plus(Decimal('-1E-1007'))
        Decimal('-0E-1007')
        >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
        Decimal('-1.00000002')
        >>> c.next_plus(Decimal('-Infinity'))
        Decimal('-9.99999999E+999')
        >>> c.next_plus(1)
        Decimal('1.00000001')
        R�R(R�R'Rl(RR((s/usr/lib64/python2.7/decimal.pyRl�scCs%t|dt�}|j|d|�S(s�Returns the number closest to a, in direction towards b.

        The result is the closest representable number from the first
        operand (but not the first operand) that is in the direction
        towards the second operand, unless the operands have the same
        value.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.next_toward(Decimal('1'), Decimal('2'))
        Decimal('1.00000001')
        >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
        Decimal('-0E-1007')
        >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
        Decimal('-1.00000002')
        >>> c.next_toward(Decimal('1'), Decimal('0'))
        Decimal('0.999999999')
        >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
        Decimal('0E-1007')
        >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
        Decimal('-1.00000004')
        >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
        Decimal('-0.00')
        >>> c.next_toward(0, 1)
        Decimal('1E-1007')
        >>> c.next_toward(Decimal(0), 1)
        Decimal('1E-1007')
        >>> c.next_toward(0, Decimal(1))
        Decimal('1E-1007')
        R�R(R�R'Rn(RRRb((s/usr/lib64/python2.7/decimal.pyRn�s cCs"t|dt�}|jd|�S(s�normalize reduces an operand to its simplest form.

        Essentially a plus operation with all trailing zeros removed from the
        result.

        >>> ExtendedContext.normalize(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.normalize(Decimal('-2.0'))
        Decimal('-2')
        >>> ExtendedContext.normalize(Decimal('1.200'))
        Decimal('1.2')
        >>> ExtendedContext.normalize(Decimal('-120'))
        Decimal('-1.2E+2')
        >>> ExtendedContext.normalize(Decimal('120.00'))
        Decimal('1.2E+2')
        >>> ExtendedContext.normalize(Decimal('0.00'))
        Decimal('0')
        >>> ExtendedContext.normalize(6)
        Decimal('6')
        R�R(R�R'R)(RR((s/usr/lib64/python2.7/decimal.pyR)
scCs"t|dt�}|jd|�S(s�Returns an indication of the class of the operand.

        The class is one of the following strings:
          -sNaN
          -NaN
          -Infinity
          -Normal
          -Subnormal
          -Zero
          +Zero
          +Subnormal
          +Normal
          +Infinity

        >>> c = Context(ExtendedContext)
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.number_class(Decimal('Infinity'))
        '+Infinity'
        >>> c.number_class(Decimal('1E-10'))
        '+Normal'
        >>> c.number_class(Decimal('2.50'))
        '+Normal'
        >>> c.number_class(Decimal('0.1E-999'))
        '+Subnormal'
        >>> c.number_class(Decimal('0'))
        '+Zero'
        >>> c.number_class(Decimal('-0'))
        '-Zero'
        >>> c.number_class(Decimal('-0.1E-999'))
        '-Subnormal'
        >>> c.number_class(Decimal('-1E-10'))
        '-Normal'
        >>> c.number_class(Decimal('-2.50'))
        '-Normal'
        >>> c.number_class(Decimal('-Infinity'))
        '-Infinity'
        >>> c.number_class(Decimal('NaN'))
        'NaN'
        >>> c.number_class(Decimal('-NaN'))
        'NaN'
        >>> c.number_class(Decimal('sNaN'))
        'sNaN'
        >>> c.number_class(123)
        '+Normal'
        R�R(R�R'Rp(RR((s/usr/lib64/python2.7/decimal.pyRp"s/cCs"t|dt�}|jd|�S(s�Plus corresponds to unary prefix plus in Python.

        The operation is evaluated using the same rules as add; the
        operation plus(a) is calculated as add('0', a) where the '0'
        has the same exponent as the operand.

        >>> ExtendedContext.plus(Decimal('1.3'))
        Decimal('1.3')
        >>> ExtendedContext.plus(Decimal('-1.3'))
        Decimal('-1.3')
        >>> ExtendedContext.plus(-1)
        Decimal('-1')
        R�R(R�R'R�(RR((s/usr/lib64/python2.7/decimal.pytplusTscCsQt|dt�}|j||d|�}|tkrItd|��n|SdS(sRaises a to the power of b, to modulo if given.

        With two arguments, compute a**b.  If a is negative then b
        must be integral.  The result will be inexact unless b is
        integral and the result is finite and can be expressed exactly
        in 'precision' digits.

        With three arguments, compute (a**b) % modulo.  For the
        three argument form, the following restrictions on the
        arguments hold:

         - all three arguments must be integral
         - b must be nonnegative
         - at least one of a or b must be nonzero
         - modulo must be nonzero and have at most 'precision' digits

        The result of pow(a, b, modulo) is identical to the result
        that would be obtained by computing (a**b) % modulo with
        unbounded precision, but is computed more efficiently.  It is
        always exact.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.power(Decimal('2'), Decimal('3'))
        Decimal('8')
        >>> c.power(Decimal('-2'), Decimal('3'))
        Decimal('-8')
        >>> c.power(Decimal('2'), Decimal('-3'))
        Decimal('0.125')
        >>> c.power(Decimal('1.7'), Decimal('8'))
        Decimal('69.7575744')
        >>> c.power(Decimal('10'), Decimal('0.301029996'))
        Decimal('2.00000000')
        >>> c.power(Decimal('Infinity'), Decimal('-1'))
        Decimal('0')
        >>> c.power(Decimal('Infinity'), Decimal('0'))
        Decimal('1')
        >>> c.power(Decimal('Infinity'), Decimal('1'))
        Decimal('Infinity')
        >>> c.power(Decimal('-Infinity'), Decimal('-1'))
        Decimal('-0')
        >>> c.power(Decimal('-Infinity'), Decimal('0'))
        Decimal('1')
        >>> c.power(Decimal('-Infinity'), Decimal('1'))
        Decimal('-Infinity')
        >>> c.power(Decimal('-Infinity'), Decimal('2'))
        Decimal('Infinity')
        >>> c.power(Decimal('0'), Decimal('0'))
        Decimal('NaN')

        >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
        Decimal('11')
        >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
        Decimal('-11')
        >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
        Decimal('1')
        >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
        Decimal('11')
        >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
        Decimal('11729830')
        >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
        Decimal('-0')
        >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
        Decimal('1')
        >>> ExtendedContext.power(7, 7)
        Decimal('823543')
        >>> ExtendedContext.power(Decimal(7), 7)
        Decimal('823543')
        >>> ExtendedContext.power(7, Decimal(7), 2)
        Decimal('1')
        R�RsUnable to convert %s to DecimalN(R�R'R%R�Rf(RRRbR�R�((s/usr/lib64/python2.7/decimal.pytpoweres
IcCs%t|dt�}|j|d|�S(s
Returns a value equal to 'a' (rounded), having the exponent of 'b'.

        The coefficient of the result is derived from that of the left-hand
        operand.  It may be rounded using the current rounding setting (if the
        exponent is being increased), multiplied by a positive power of ten (if
        the exponent is being decreased), or is unchanged (if the exponent is
        already equal to that of the right-hand operand).

        Unlike other operations, if the length of the coefficient after the
        quantize operation would be greater than precision then an Invalid
        operation condition is raised.  This guarantees that, unless there is
        an error condition, the exponent of the result of a quantize is always
        equal to that of the right-hand operand.

        Also unlike other operations, quantize will never raise Underflow, even
        if the result is subnormal and inexact.

        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
        Decimal('2.170')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
        Decimal('2.17')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
        Decimal('2.2')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
        Decimal('2')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
        Decimal('0E+1')
        >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
        Decimal('-Infinity')
        >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
        Decimal('NaN')
        >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
        Decimal('-0')
        >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
        Decimal('-0E+5')
        >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
        Decimal('NaN')
        >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
        Decimal('NaN')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
        Decimal('217.0')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
        Decimal('217')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
        Decimal('2.2E+2')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
        Decimal('2E+2')
        >>> ExtendedContext.quantize(1, 2)
        Decimal('1')
        >>> ExtendedContext.quantize(Decimal(1), 2)
        Decimal('1')
        >>> ExtendedContext.quantize(1, Decimal(2))
        Decimal('1')
        R�R(R�R'R,(RRRb((s/usr/lib64/python2.7/decimal.pyR,�s7cCs
td�S(skJust returns 10, as this is Decimal, :)

        >>> ExtendedContext.radix()
        Decimal('10')
        i
(R(R((s/usr/lib64/python2.7/decimal.pyRq�scCsNt|dt�}|j|d|�}|tkrFtd|��n|SdS(sReturns the remainder from integer division.

        The result is the residue of the dividend after the operation of
        calculating integer division as described for divide-integer, rounded
        to precision digits if necessary.  The sign of the result, if
        non-zero, is the same as that of the original dividend.

        This operation will fail under the same conditions as integer division
        (that is, if integer division on the same two operands would fail, the
        remainder cannot be calculated).

        >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
        Decimal('2.1')
        >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
        Decimal('1')
        >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
        Decimal('-1')
        >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
        Decimal('0.2')
        >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
        Decimal('0.1')
        >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
        Decimal('1.0')
        >>> ExtendedContext.remainder(22, 6)
        Decimal('4')
        >>> ExtendedContext.remainder(Decimal(22), 6)
        Decimal('4')
        >>> ExtendedContext.remainder(22, Decimal(6))
        Decimal('4')
        R�RsUnable to convert %s to DecimalN(R�R'R�R�Rf(RRRbR�((s/usr/lib64/python2.7/decimal.pyR��s
cCs%t|dt�}|j|d|�S(sGReturns to be "a - b * n", where n is the integer nearest the exact
        value of "x / b" (if two integers are equally near then the even one
        is chosen).  If the result is equal to 0 then its sign will be the
        sign of a.

        This operation will fail under the same conditions as integer division
        (that is, if integer division on the same two operands would fail, the
        remainder cannot be calculated).

        >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
        Decimal('-0.9')
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
        Decimal('-2')
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
        Decimal('1')
        >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
        Decimal('-1')
        >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
        Decimal('0.2')
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
        Decimal('0.1')
        >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
        Decimal('-0.3')
        >>> ExtendedContext.remainder_near(3, 11)
        Decimal('3')
        >>> ExtendedContext.remainder_near(Decimal(3), 11)
        Decimal('3')
        >>> ExtendedContext.remainder_near(3, Decimal(11))
        Decimal('3')
        R�R(R�R'R�(RRRb((s/usr/lib64/python2.7/decimal.pyR�scCs%t|dt�}|j|d|�S(sNReturns a rotated copy of a, b times.

        The coefficient of the result is a rotated copy of the digits in
        the coefficient of the first operand.  The number of places of
        rotation is taken from the absolute value of the second operand,
        with the rotation being to the left if the second operand is
        positive or to the right otherwise.

        >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
        Decimal('400000003')
        >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
        Decimal('12')
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
        Decimal('891234567')
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
        Decimal('123456789')
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
        Decimal('345678912')
        >>> ExtendedContext.rotate(1333333, 1)
        Decimal('13333330')
        >>> ExtendedContext.rotate(Decimal(1333333), 1)
        Decimal('13333330')
        >>> ExtendedContext.rotate(1333333, Decimal(1))
        Decimal('13333330')
        R�R(R�R'Rv(RRRb((s/usr/lib64/python2.7/decimal.pyRv?scCst|dt�}|j|�S(s�Returns True if the two operands have the same exponent.

        The result is never affected by either the sign or the coefficient of
        either operand.

        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
        False
        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
        True
        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
        False
        >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
        True
        >>> ExtendedContext.same_quantum(10000, -1)
        True
        >>> ExtendedContext.same_quantum(Decimal(10000), -1)
        True
        >>> ExtendedContext.same_quantum(10000, Decimal(-1))
        True
        R�(R�R'R.(RRRb((s/usr/lib64/python2.7/decimal.pyR.\scCs%t|dt�}|j|d|�S(s3Returns the first operand after adding the second value its exp.

        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
        Decimal('0.0750')
        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
        Decimal('7.50')
        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
        Decimal('7.50E+3')
        >>> ExtendedContext.scaleb(1, 4)
        Decimal('1E+4')
        >>> ExtendedContext.scaleb(Decimal(1), 4)
        Decimal('1E+4')
        >>> ExtendedContext.scaleb(1, Decimal(4))
        Decimal('1E+4')
        R�R(R�R'Ry(RRRb((s/usr/lib64/python2.7/decimal.pyRytscCs%t|dt�}|j|d|�S(s{Returns a shifted copy of a, b times.

        The coefficient of the result is a shifted copy of the digits
        in the coefficient of the first operand.  The number of places
        to shift is taken from the absolute value of the second operand,
        with the shift being to the left if the second operand is
        positive or to the right otherwise.  Digits shifted into the
        coefficient are zeros.

        >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
        Decimal('400000000')
        >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
        Decimal('0')
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
        Decimal('1234567')
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
        Decimal('123456789')
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
        Decimal('345678900')
        >>> ExtendedContext.shift(88888888, 2)
        Decimal('888888800')
        >>> ExtendedContext.shift(Decimal(88888888), 2)
        Decimal('888888800')
        >>> ExtendedContext.shift(88888888, Decimal(2))
        Decimal('888888800')
        R�R(R�R'R�(RRRb((s/usr/lib64/python2.7/decimal.pyR��scCs"t|dt�}|jd|�S(s�Square root of a non-negative number to context precision.

        If the result must be inexact, it is rounded using the round-half-even
        algorithm.

        >>> ExtendedContext.sqrt(Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.sqrt(Decimal('-0'))
        Decimal('-0')
        >>> ExtendedContext.sqrt(Decimal('0.39'))
        Decimal('0.624499800')
        >>> ExtendedContext.sqrt(Decimal('100'))
        Decimal('10')
        >>> ExtendedContext.sqrt(Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.sqrt(Decimal('1.0'))
        Decimal('1.0')
        >>> ExtendedContext.sqrt(Decimal('1.00'))
        Decimal('1.0')
        >>> ExtendedContext.sqrt(Decimal('7'))
        Decimal('2.64575131')
        >>> ExtendedContext.sqrt(Decimal('10'))
        Decimal('3.16227766')
        >>> ExtendedContext.sqrt(2)
        Decimal('1.41421356')
        >>> ExtendedContext.prec
        9
        R�R(R�R'R7(RR((s/usr/lib64/python2.7/decimal.pyR7�scCsNt|dt�}|j|d|�}|tkrFtd|��n|SdS(s&Return the difference between the two operands.

        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
        Decimal('0.23')
        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
        Decimal('0.00')
        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
        Decimal('-0.77')
        >>> ExtendedContext.subtract(8, 5)
        Decimal('3')
        >>> ExtendedContext.subtract(Decimal(8), 5)
        Decimal('3')
        >>> ExtendedContext.subtract(8, Decimal(5))
        Decimal('3')
        R�RsUnable to convert %s to DecimalN(R�R'R�R�Rf(RRRbR�((s/usr/lib64/python2.7/decimal.pytsubtract�s
cCs"t|dt�}|jd|�S(syConverts a number to a string, using scientific notation.

        The operation is not affected by the context.
        R�R(R�R'R�(RR((s/usr/lib64/python2.7/decimal.pyR��scCs"t|dt�}|jd|�S(syConverts a number to a string, using scientific notation.

        The operation is not affected by the context.
        R�R(R�R'R�(RR((s/usr/lib64/python2.7/decimal.pyt
to_sci_string�scCs"t|dt�}|jd|�S(skRounds to an integer.

        When the operand has a negative exponent, the result is the same
        as using the quantize() operation using the given operand as the
        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
        of the operand as the precision setting; Inexact and Rounded flags
        are allowed in this operation.  The rounding mode is taken from the
        context.

        >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
        Decimal('2')
        >>> ExtendedContext.to_integral_exact(Decimal('100'))
        Decimal('100')
        >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
        Decimal('100')
        >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
        Decimal('102')
        >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
        Decimal('-102')
        >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
        Decimal('1.0E+6')
        >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
        Decimal('7.89E+77')
        >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
        Decimal('-Infinity')
        R�R(R�R'R2(RR((s/usr/lib64/python2.7/decimal.pyR2�scCs"t|dt�}|jd|�S(sLRounds to an integer.

        When the operand has a negative exponent, the result is the same
        as using the quantize() operation using the given operand as the
        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
        of the operand as the precision setting, except that no flags will
        be set.  The rounding mode is taken from the context.

        >>> ExtendedContext.to_integral_value(Decimal('2.1'))
        Decimal('2')
        >>> ExtendedContext.to_integral_value(Decimal('100'))
        Decimal('100')
        >>> ExtendedContext.to_integral_value(Decimal('100.0'))
        Decimal('100')
        >>> ExtendedContext.to_integral_value(Decimal('101.5'))
        Decimal('102')
        >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
        Decimal('-102')
        >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
        Decimal('1.0E+6')
        >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
        Decimal('7.89E+77')
        >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
        Decimal('-Infinity')
        R�R(R�R'R�(RR((s/usr/lib64/python2.7/decimal.pyR�
sN(RR R!R"R@R�R�R;R3R:R~RURiR�R�R�R�R�R4R�R�R\R�R�R<R�R=R8RER�R�R�RFR�R�R�RJR�RIRJR-R�RKR�RLR�RMRNRURXRYRcReRfRdR�RgR�RhR�R�RkRlRnR)RpR�R�R,RqR�R�RvR.RyR�R7R�R�R�R2R�R�(((s/usr/lib64/python2.7/decimal.pyR�s�"																$	#			
	
	
		%																											 			#		2	P	:		&	"					 					R]cBs)eZdZdd�Zd�ZeZRS(R-RGRJcCs�|dkr*d|_d|_d|_nct|t�rf|j|_t|j�|_|j|_n'|d|_|d|_|d|_dS(Niii(	R@R-RGRJRQRR%R&RC(RRh((s/usr/lib64/python2.7/decimal.pyR�0s		

cCsd|j|j|jfS(Ns(%r, %r, %r)(R-RGRJ(R((s/usr/lib64/python2.7/decimal.pyR�?s(ssignsintsexpN(R R!R�R@R�R�R�(((s/usr/lib64/python2.7/decimal.pyR]*s	icCs�|j|jkr!|}|}n|}|}tt|j��}tt|j��}|jtd||d�}||jd|kr�d|_||_n|jd|j|j9_|j|_||fS(scNormalizes op1, op2 to have the same exp and length of coefficient.

    Done during addition.
    i����iii
(RJRXRWRGR�(R�R�R3ttmpR|ttmp_lent	other_lenRJ((s/usr/lib64/python2.7/decimal.pyR�Fs		iREiR�it2t3it4t5t6t7t8R1RRbR5RvR�RucCs?|dkrtd��nd|}dt|�||dS(s[Number of bits in binary representation of the positive integer n,
    or 0 if n == 0.
    is-The argument to _nbits should be nonnegative.s%xi(R`RX(R#t
correctionthex_n((s/usr/lib64/python2.7/decimal.pyRis
cCs{|dkrdS|dkr(|d|Stt|��}t|�t|jd��}||krjdS|d|SdS(s Given integers n and e, return n * 10**e if it's an integer, else None.

    The computation is designed to avoid computing large powers of 10
    unnecessarily.

    >>> _decimal_lshift_exact(3, 4)
    30000
    >>> _decimal_lshift_exact(300, -999999999)  # returns None

    ii
REN(RWR\RXR�R@(R#R�tstr_ntval_n((s/usr/lib64/python2.7/decimal.pyRvscCs^|dks|dkr'td��nd}x*||krY||||d?}}q0W|S(s�Closest integer to the square root of the positive integer n.  a is
    an initial approximation to the square root.  Any positive integer
    will do for a, but the closer a is to the square root of n the
    faster convergence will be.

    is3Both arguments to _sqrt_nearest should be positive.i(R`(R#RRb((s/usr/lib64/python2.7/decimal.pyt
_sqrt_nearest�scCs7d|>||?}}|d||d@|d@|kS(s�Given an integer x and a nonnegative integer shift, return closest
    integer to x / 2**shift; use round-to-even in case of a tie.

    lii((R	R�RbR�((s/usr/lib64/python2.7/decimal.pyt_rshift_nearest�scCs/t||�\}}|d||d@|kS(saClosest integer to a/b, a and b positive integers; rounds to even
    in the case of a tie.

    ii(R�(RRbR�R�((s/usr/lib64/python2.7/decimal.pyt_div_nearest�sic	CsC||}d}x�||kr?tt|��||>|kse||kr�t|�||?|kr�tt||�d>|t||t||�|��}|d7}qWtdtt|��d|�}t||�}t||�}x>t|ddd�D]&}t||�t|||�}qWt|||�S(s�Integer approximation to M*log(x/M), with absolute error boundable
    in terms only of x/M.

    Given positive integers x and M, return an integer approximation to
    M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference
    between the approximation and the exact result is at most 22.  For
    L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In
    both cases these are upper bounds on the error; it will usually be
    much smaller.iii����ii����(	R[R\R�R�R�RGRXRWR�(	R	tMtLRtRtTtyshifttwRw((s/usr/lib64/python2.7/decimal.pyt_ilog�s
/&'%$c
Cs�|d7}tt|��}||||dk}|dkr�d|}|||}|dkru|d|9}nt|d|�}t||�}t|�}t|||�}||}	nd}t|d|�}	t|	|d�S(s�Given integers c, e and p with c > 0, p >= 0, compute an integer
    approximation to 10**p * log10(c*10**e), with an absolute error of
    at most 1.  Assumes that c*10**e is not exactly 1.iiii
id(RXRWR�R�t
_log10_digits(
R5R�RR6RuR�Rwtlog_dtlog_10tlog_tenpower((s/usr/lib64/python2.7/decimal.pyRW�s 


c	Cs|d7}tt|��}||||dk}|dkr�|||}|dkrk|d|9}nt|d|�}t|d|�}nd}|r�ttt|���d}||dkr�t|t||�d|�}qd}nd}t||d�S(s�Given integers c, e and p with c > 0, compute an integer
    approximation to 10**p * log(c*10**e), with an absolute error of
    at most 1.  Assumes that c*10**e is not exactly 1.iiii
id(RXRWR�R�R\R�(	R5R�RR6RuRwR�R"t	f_log_ten((s/usr/lib64/python2.7/decimal.pyRT�s"
$	t
_Log10MemoizecBs eZdZd�Zd�ZRS(s�Class to compute, store, and allow retrieval of, digits of the
    constant log(10) = 2.302585....  This constant is needed by
    Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__.cCs
d|_dS(Nt/23025850929940456840179914546843642076011014886(Rl(R((s/usr/lib64/python2.7/decimal.pyR�,scCs�|dkrtd��n|t|j�kr�d}xatr�d||d}tttd||�d��}||d|kr�Pn|d7}q9W|jd�d |_nt|j|d	 �S(
stGiven an integer p >= 0, return floor(10**p)*log(10).

        For example, self.getdigits(3) returns 2302.
        isp should be nonnegativeii
iidREi����i(	R`RXRlR'RWR�R�R�RG(RRR"R�Rl((s/usr/lib64/python2.7/decimal.pyt	getdigits/s		"(R R!R"R�R�(((s/usr/lib64/python2.7/decimal.pyR�(s	c	Cs�tt|�|>|�}tdtt|��d|�}t||�}t|�|>}x9t|ddd�D]!}t|||||�}quWxIt|ddd�D]1}t|�|d>}t||||�}q�W||S(s�Given integers x and M, M > 0, such that x/M is small in absolute
    value, compute an integer approximation to M*exp(x/M).  For 0 <=
    x/M <= 2.4, the absolute error in the result is bounded by 60 (and
    is usually much smaller).i����iiii����i(RR[RGRXRWR�R�(	R	R�R�R�R�RtMshiftRRw((s/usr/lib64/python2.7/decimal.pyt_iexpMs%c	Cs�|d7}td|tt|��d�}||}||}|dkr^|d|}n|d|}t|t|��\}}t|d|�}tt|d|�d�||dfS(s�Compute an approximation to exp(c*10**e), with p decimal places of
    precision.

    Returns integers d, f such that:

      10**(p-1) <= d <= 10**p, and
      (d-1)*10**f < exp(c*10**e) < (d+1)*10**f

    In other words, d*10**f is an approximation to exp(c*10**e) with p
    digits of precision, and with an error in d of at most 1.  This is
    almost, but not quite, the same as the error being < 1ulp: when d
    = 10**(p-1) the error could be up to 10 ulp.iiii
i�i(R�RXRWR�R�R�R�(	R5R�RR"R�R�tcshifttquotR((s/usr/lib64/python2.7/decimal.pyRGrs
#

cCs*ttt|���|}t||||d�}||}|dkra||d|}nt||d|�}|dkr�tt|��|dk|dkkr�d|ddd|}	}
q d|d|}	}
n:t||d|d�\}	}
t|	d�}	|
d7}
|	|
fS(s5Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
    y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that:

      10**(p-1) <= c <= 10**p, and
      (c-1)*10**e < x**y < (c+1)*10**e

    in other words, c*10**e is an approximation to x**y with p digits
    of precision, and with an error in c of at most 1.  (This is
    almost, but not quite, the same as the error being < 1ulp: when c
    == 10**(p-1) we can only guarantee error < 10ulp.)

    We assume that: x is positive and not equal to 1, and y is nonzero.
    iii
(RXRWR\RTR�RG(R
RR
RRRbtlxcR�tpcR�RJ((s/usr/lib64/python2.7/decimal.pyR�s
( !
idiFi5i(iiii
icCsA|dkrtd��nt|�}dt|�||dS(s@Compute a lower bound for 100*log10(c) for a positive integer c.is0The argument to _log10_lb should be nonnegative.id(R`RWRX(R5R�tstr_c((s/usr/lib64/python2.7/decimal.pyR�scCsqt|t�r|St|ttf�r2t|�S|rTt|t�rTtj|�S|rmtd|��ntS(s�Convert other to Decimal.

    Verifies that it's ok to use in an implicit construction.
    If allow_float is true, allow conversion from float;  this
    is used in the comparison methods (__eq__ and friends).

    sUnable to convert %s to Decimal(RQRRGR[RdReRfR�(R|R�R�((s/usr/lib64/python2.7/decimal.pyR��s

R3iR2RRR4i�ɚ;R*i6e�R�i	s�        # A numeric string consists of:
#    \s*
    (?P<sign>[-+])?              # an optional sign, followed by either...
    (
        (?=\d|\.\d)              # ...a number (with at least one digit)
        (?P<int>\d*)             # having a (possibly empty) integer part
        (\.(?P<frac>\d*))?       # followed by an optional fractional part
        (E(?P<exp>[-+]?\d+))?    # followed by an optional exponent, or...
    |
        Inf(inity)?              # ...an infinity, or...
    |
        (?P<signal>s)?           # ...an (optionally signaling)
        NaN                      # NaN
        (?P<diag>\d*)            # with (possibly empty) diagnostic info.
    )
#    \s*
    \Z
s0*$s50*$s�\A
(?:
   (?P<fill>.)?
   (?P<align>[<>=^])
)?
(?P<sign>[-+ ])?
(?P<zeropad>0)?
(?P<minimumwidth>(?!0)\d+)?
(?P<thousands_sep>,)?
(?:\.(?P<precision>0|(?!0)\d+))?
(?P<type>[eEfFgGn%])?
\Z
cCs>tj|�}|dkr.td|��n|j�}|d}|d}|ddk	|d<|dr�|dk	r�td|��n|dk	r�td|��q�n|p�d|d<|p�d|d<|d	dkr�d
|d	<nt|dp�d�|d<|d
dk	r+t|d
�|d
<n|d
dkrk|ddks[|ddkrkd|d
<qkn|ddkr�d|d<|dkr�tj�}n|ddk	r�td|��n|d|d<|d|d<|d|d<n7|ddkr
d|d<nddg|d<d|d<t|t	�|d<|S(sParse and validate a format specifier.

    Turns a standard numeric format specifier into a dict, with the
    following entries:

      fill: fill character to pad field to minimum width
      align: alignment type, either '<', '>', '=' or '^'
      sign: either '+', '-' or ' '
      minimumwidth: nonnegative integer giving minimum width
      zeropad: boolean, indicating whether to pad with zeros
      thousands_sep: string to use as thousands separator, or ''
      grouping: grouping for thousands separators, in format
        used by localeconv
      decimal_point: string to use for decimal point
      precision: nonnegative integer giving precision, or None
      type: one of the characters 'eEfFgG%', or None
      unicode: boolean (always True for Python 3.x)

    sInvalid format specifier: tfilltaligntzeropads7Fill character conflicts with '0' in format specifier: s2Alignment conflicts with '0' in format specifier: t t>R-RFtminimumwidthRER�iR}R�iR#R�t
thousands_sepsJExplicit thousands separator conflicts with 'n' type in format specifier: tgroupingt
decimal_pointRIiR�tunicodeN(
t_parse_format_specifier_regextmatchR@R`t	groupdictRGt_localet
localeconvRQR�(tformat_specR�Ritformat_dictR�R�((s/usr/lib64/python2.7/decimal.pyR�DsP




 



c	Cs�|d}|d}||t|�t|�}|d}|dkrY|||}n|dkrv|||}nb|dkr�|||}nE|dkr�t|�d}|| ||||}ntd	��|d
r�t|�}n|S(sGiven an unpadded, non-aligned numeric string 'body' and sign
    string 'sign', add padding and alignment conforming to the given
    format specifier dictionary 'spec' (as produced by
    parse_format_specifier).

    Also converts result to unicode if necessary.

    R�R�R�t<R�t=t^isUnrecognised alignment fieldR�(RXR`R�(	R-R�R�R�R�tpaddingR�Rxthalf((s/usr/lib64/python2.7/decimal.pyR��s"




cCs�ddlm}m}|s gS|ddkr]t|�dkr]||d ||d��S|dtjkrx|d Std��dS(syConvert a localeconv-style grouping into a (possibly infinite)
    iterable of integers representing group lengths.

    i����(tchaintrepeatiii����s unrecognised format for groupingN(t	itertoolsRRRXR�tCHAR_MAXR`(R�RR((s/usr/lib64/python2.7/decimal.pyt_group_lengths�s
"cCs|d}|d}g}x�t|�D]�}|dkrHtd��nttt|�|d�|�}|jd|t|�||�|| }||8}|r�|dkr�Pn|t|�8}q'Wtt|�|d�}|jd|t|�||�|jt|��S(snInsert thousands separators into a digit string.

    spec is a dictionary whose keys should include 'thousands_sep' and
    'grouping'; typically it's the result of parsing the format
    specifier using _parse_format_specifier.

    The min_width keyword argument gives the minimum length of the
    result, which will be padded on the left with zeros if necessary.

    If necessary, the zero padding adds an extra '0' on the left to
    avoid a leading thousands separator.  For example, inserting
    commas every three digits in '123456', with min_width=8, gives
    '0,123,456', even though that has length 9.

    R�R�isgroup length should be positiveiRE(RR`R�R�RXRaRbtreversed(RlR�t	min_widthtsepR�tgroupsR6((s/usr/lib64/python2.7/decimal.pyt_insert_thousands_sep�s 

!$
$cCs*|r
dS|ddkr"|dSdSdS(sDetermine sign character.RFR-s +RIN((tis_negativeR�((s/usr/lib64/python2.7/decimal.pyR��s
cCs�t||�}|r&|d|}n|dksB|ddkr�idd6dd6dd6dd6|d}|d	j||�7}n|dd
kr�|d
7}n|dr�|dt|�t|�}nd}t|||�}t||||�S(
scFormat a number, given the following data:

    is_negative: true if the number is negative, else false
    intpart: string of digits that must appear before the decimal point
    fracpart: string of digits that must come after the point
    exp: exponent, as an integer
    spec: dictionary resulting from parsing the format specifier

    This function uses the information in spec to:
      insert separators (decimal separator and thousands separators)
      format the sign
      format the exponent
      add trailing '%' for the '%' type
      zero-pad if necessary
      fill and align if necessary
    R�iR}R�R�R�R�R�s{0}{1:+}R�R�R�(R�tformatRXRR�(RRjRkRJR�R-techarR((s/usr/lib64/python2.7/decimal.pyR��s*

!tInfs-InfR�t__main__(mR"t__all__t__version__R:t_copytmathRntnumberst_numberstcollectionsRt_namedtupleRtImportErrorRRRRRRRRtArithmeticErrorRRRR+tZeroDivisionErrorRR.R/R	R0R
RRR
RR�R<R7ROR5R8R>thasattrR=R9RRR@RRRYR$tNumbertregisterRARR]R�RRR�R�R�R�RWRTR�R�R�R�RGRRR�RRRtretcompiletVERBOSEt
IGNORECASEtUNICODER�RSR�R�R�tlocaleR�R�R�RRR�R�RSRRR)R?RR>R,R tdoctestttestmodR6(((s/usr/lib64/python2.7/decimal.pyt<module>ts2	


&



	

	
	*�������������������}#%					0	"	,#%	$	*#%				 
T	!	%	
	)

Filemanager

Name Type Size Permission Actions
Demo Folder 0755
Doc Folder 0755
Tools Folder 0755
bsddb Folder 0755
compiler Folder 0755
config Folder 0755
ctypes Folder 0755
curses Folder 0755
distutils Folder 0755
email Folder 0755
encodings Folder 0755
hotshot Folder 0755
idlelib Folder 0755
importlib Folder 0755
json Folder 0755
lib-dynload Folder 0755
lib-tk Folder 0755
lib2to3 Folder 0755
logging Folder 0755
multiprocessing Folder 0755
plat-linux2 Folder 0755
pydoc_data Folder 0755
site-packages Folder 0755
sqlite3 Folder 0755
test Folder 0755
unittest Folder 0755
wsgiref Folder 0755
xml Folder 0755
.BaseHTTPServer.pyo.40009 File 21.18 KB 0644
.Bastion.pyo.40009 File 6.5 KB 0644
.CGIHTTPServer.pyo.40009 File 10.84 KB 0644
.ConfigParser.pyo.40009 File 24.62 KB 0644
.Cookie.pyo.40009 File 21.89 KB 0644
.MimeWriter.pyo.40009 File 7.19 KB 0644
.Queue.pyo.40009 File 9.19 KB 0644
.SimpleHTTPServer.pyo.40009 File 7.55 KB 0644
.SimpleXMLRPCServer.pyo.40009 File 22.31 KB 0644
.SocketServer.pyo.40009 File 23.49 KB 0644
.StringIO.pyo.40009 File 11.21 KB 0644
.UserDict.pyo.40009 File 8.61 KB 0644
.UserList.pyo.40009 File 6.42 KB 0644
.UserString.pyo.40009 File 14.52 KB 0644
._LWPCookieJar.pyo.40009 File 5.4 KB 0644
.__future__.pyo.40009 File 4.13 KB 0644
.__phello__.foo.pyo.40009 File 125 B 0644
._abcoll.pyo.40009 File 24.4 KB 0644
._osx_support.pyo.40009 File 11.28 KB 0644
._pyio.pyo.40009 File 62.71 KB 0644
._strptime.pyo.40009 File 14.53 KB 0644
._sysconfigdata.pyo.40009 File 20.72 KB 0644
._threading_local.pyo.40009 File 6.45 KB 0644
._weakrefset.pyo.40009 File 9.25 KB 0644
.aifc.pyo.40009 File 29.31 KB 0644
.antigravity.pyo.40009 File 203 B 0644
.anydbm.pyo.40009 File 2.73 KB 0644
.ast.pyo.40009 File 12.65 KB 0644
.asynchat.pyo.40009 File 8.44 KB 0644
.asyncore.pyo.40009 File 18.4 KB 0644
.atexit.pyo.40009 File 2.15 KB 0644
.audiodev.pyo.40009 File 8.27 KB 0644
.base64.pyo.40009 File 10.63 KB 0644
.bdb.pyo.40009 File 18.65 KB 0644
.binhex.pyo.40009 File 15.04 KB 0644
.bisect.pyo.40009 File 3 KB 0644
.cProfile.pyo.40009 File 6.25 KB 0644
.calendar.pyo.40009 File 27.13 KB 0644
.cgi.pyo.40009 File 31.71 KB 0644
.cgitb.pyo.40009 File 11.9 KB 0644
.chunk.pyo.40009 File 5.46 KB 0644
.cmd.pyo.40009 File 13.71 KB 0644
.code.pyo.40009 File 10.09 KB 0644
.codecs.pyo.40009 File 35.74 KB 0644
.codeop.pyo.40009 File 6.44 KB 0644
.colorsys.pyo.40009 File 3.9 KB 0644
.commands.pyo.40009 File 2.41 KB 0644
.compileall.pyo.40009 File 6.85 KB 0644
.contextlib.pyo.40009 File 4.35 KB 0644
.crypt.pyo.40009 File 2.89 KB 0644
.csv.pyo.40009 File 13.14 KB 0644
.dbhash.pyo.40009 File 718 B 0644
.decimal.pyo.40009 File 167.33 KB 0644
.dircache.pyo.40009 File 1.54 KB 0644
.dis.pyo.40009 File 6.08 KB 0644
.dumbdbm.pyo.40009 File 6.41 KB 0644
.dummy_thread.pyo.40009 File 5.27 KB 0644
.dummy_threading.pyo.40009 File 1.25 KB 0644
.filecmp.pyo.40009 File 9.4 KB 0644
.fileinput.pyo.40009 File 14.48 KB 0644
.fnmatch.pyo.40009 File 3.45 KB 0644
.formatter.pyo.40009 File 18.73 KB 0644
.fpformat.pyo.40009 File 4.56 KB 0644
.fractions.pyo.40009 File 19.27 KB 0644
.ftplib.pyo.40009 File 33.38 KB 0644
.functools.pyo.40009 File 5.95 KB 0644
.genericpath.pyo.40009 File 3.19 KB 0644
.getpass.pyo.40009 File 4.63 KB 0644
.gettext.pyo.40009 File 15.19 KB 0644
.glob.pyo.40009 File 2.83 KB 0644
.gzip.pyo.40009 File 14.72 KB 0644
.hashlib.pyo.40009 File 6.74 KB 0644
.heapq.pyo.40009 File 14.13 KB 0644
.hmac.pyo.40009 File 4.44 KB 0644
.htmlentitydefs.pyo.40009 File 6.22 KB 0644
.htmllib.pyo.40009 File 19.83 KB 0644
.ihooks.pyo.40009 File 20.87 KB 0644
.imghdr.pyo.40009 File 4.73 KB 0644
.inspect.pyo.40009 File 39.04 KB 0644
.io.pyo.40009 File 3.4 KB 0644
.keyword.pyo.40009 File 2.06 KB 0644
.linecache.pyo.40009 File 3.14 KB 0644
.locale.pyo.40009 File 48.77 KB 0644
.macpath.pyo.40009 File 7.47 KB 0644
.macurl2path.pyo.40009 File 2.71 KB 0644
.mailcap.pyo.40009 File 6.92 KB 0644
.md5.pyo.40009 File 378 B 0644
.mhlib.pyo.40009 File 33.01 KB 0644
.mimetools.pyo.40009 File 8.03 KB 0644
.mimetypes.pyo.40009 File 17.86 KB 0644
.mimify.pyo.40009 File 11.71 KB 0644
.mutex.pyo.40009 File 2.46 KB 0644
.netrc.pyo.40009 File 3.83 KB 0644
.new.pyo.40009 File 862 B 0644
.nntplib.pyo.40009 File 20.55 KB 0644
.nturl2path.pyo.40009 File 1.77 KB 0644
.numbers.pyo.40009 File 13.68 KB 0644
.opcode.pyo.40009 File 6 KB 0644
.os.pyo.40009 File 24.96 KB 0644
.os2emxpath.pyo.40009 File 4.39 KB 0644
.pdb.pyo.40009 File 42.59 KB 0644
.pipes.pyo.40009 File 9.09 KB 0644
.pkgutil.pyo.40009 File 18.49 KB 0644
.platform.pyo.40009 File 36.04 KB 0644
.poplib.pyo.40009 File 13.03 KB 0644
.posixfile.pyo.40009 File 7.47 KB 0644
.posixpath.pyo.40009 File 11.03 KB 0644
.pstats.pyo.40009 File 24.43 KB 0644
.pty.pyo.40009 File 4.85 KB 0644
.py_compile.pyo.40009 File 6.27 KB 0644
.pyclbr.pyo.40009 File 9.42 KB 0644
.quopri.pyo.40009 File 6.42 KB 0644
.random.pyo.40009 File 24.99 KB 0644
.re.pyo.40009 File 12.79 KB 0644
.repr.pyo.40009 File 5.26 KB 0644
.rexec.pyo.40009 File 23.58 KB 0644
.rfc822.pyo.40009 File 31.05 KB 0644
.rlcompleter.pyo.40009 File 5.84 KB 0644
.robotparser.pyo.40009 File 7.7 KB 0644
.runpy.pyo.40009 File 8.21 KB 0644
.sched.pyo.40009 File 4.88 KB 0644
.sets.pyo.40009 File 16.5 KB 0644
.sgmllib.pyo.40009 File 15.07 KB 0644
.sha.pyo.40009 File 421 B 0644
.shelve.pyo.40009 File 10.03 KB 0644
.shlex.pyo.40009 File 7.37 KB 0644
.shutil.pyo.40009 File 18.1 KB 0644
.site.pyo.40009 File 19.11 KB 0644
.smtpd.pyo.40009 File 15.52 KB 0644
.smtplib.pyo.40009 File 29.29 KB 0644
.sndhdr.pyo.40009 File 7.18 KB 0644
.sre.pyo.40009 File 519 B 0644
.sre_constants.pyo.40009 File 5.97 KB 0644
.sre_parse.pyo.40009 File 18.98 KB 0644
.ssl.pyo.40009 File 31.51 KB 0644
.stat.pyo.40009 File 2.69 KB 0644
.statvfs.pyo.40009 File 620 B 0644
.string.pyo.40009 File 19.54 KB 0644
.stringold.pyo.40009 File 12.25 KB 0644
.struct.pyo.40009 File 239 B 0644
.subprocess.pyo.40009 File 40.93 KB 0644
.sunau.pyo.40009 File 17.53 KB 0644
.sunaudio.pyo.40009 File 1.94 KB 0644
.symbol.pyo.40009 File 2.96 KB 0644
.sysconfig.pyo.40009 File 17.23 KB 0644
.tabnanny.pyo.40009 File 8.05 KB 0644
.tarfile.pyo.40009 File 73.44 KB 0644
.telnetlib.pyo.40009 File 22.53 KB 0644
.tempfile.pyo.40009 File 19.35 KB 0644
.this.pyo.40009 File 1.19 KB 0644
.timeit.pyo.40009 File 11.5 KB 0644
.toaiff.pyo.40009 File 3.03 KB 0644
.token.pyo.40009 File 3.73 KB 0644
.traceback.pyo.40009 File 11.35 KB 0644
.tty.pyo.40009 File 1.29 KB 0644
.types.pyo.40009 File 2.45 KB 0644
.urlparse.pyo.40009 File 14.73 KB 0644
.user.pyo.40009 File 1.68 KB 0644
.uu.pyo.40009 File 4.21 KB 0644
.uuid.pyo.40009 File 20.68 KB 0644
.weakref.pyo.40009 File 13.72 KB 0644
.whichdb.pyo.40009 File 2.19 KB 0644
.xdrlib.pyo.40009 File 9.07 KB 0644
.xmllib.pyo.40009 File 26.22 KB 0644
.zipfile.pyo.40009 File 40.33 KB 0644
BaseHTTPServer.py File 21.93 KB 0644
BaseHTTPServer.pyc File 21.18 KB 0644
BaseHTTPServer.pyo File 21.18 KB 0644
Bastion.py File 5.61 KB 0644
Bastion.pyc File 6.5 KB 0644
Bastion.pyo File 6.5 KB 0644
CGIHTTPServer.py File 12.84 KB 0644
CGIHTTPServer.pyc File 10.84 KB 0644
CGIHTTPServer.pyo File 10.84 KB 0644
ConfigParser.py File 27.1 KB 0644
ConfigParser.pyc File 24.62 KB 0644
ConfigParser.pyo File 24.62 KB 0644
Cookie.py File 24.66 KB 0644
Cookie.pyc File 21.64 KB 0644
Cookie.pyo File 21.64 KB 0644
DocXMLRPCServer.py File 10.52 KB 0644
DocXMLRPCServer.pyc File 9.96 KB 0644
DocXMLRPCServer.pyo File 9.85 KB 0644
HTMLParser.py File 16.58 KB 0644
HTMLParser.pyc File 13.39 KB 0644
HTMLParser.pyo File 13.1 KB 0644
MimeWriter.py File 6.33 KB 0644
MimeWriter.pyc File 7.19 KB 0644
MimeWriter.pyo File 7.19 KB 0644
Queue.py File 8.36 KB 0644
Queue.pyc File 9.19 KB 0644
Queue.pyo File 9.19 KB 0644
SimpleHTTPServer.py File 7.25 KB 0644
SimpleHTTPServer.pyc File 7.55 KB 0644
SimpleHTTPServer.pyo File 7.55 KB 0644
SimpleXMLRPCServer.py File 25.17 KB 0644
SimpleXMLRPCServer.pyc File 22.31 KB 0644
SimpleXMLRPCServer.pyo File 22.31 KB 0644
SocketServer.py File 23.29 KB 0644
SocketServer.pyc File 23.49 KB 0644
SocketServer.pyo File 23.49 KB 0644
StringIO.py File 10.41 KB 0644
StringIO.pyc File 11.21 KB 0644
StringIO.pyo File 11.21 KB 0644
UserDict.py File 5.67 KB 0644
UserDict.pyc File 8.61 KB 0644
UserDict.pyo File 8.61 KB 0644
UserList.py File 3.56 KB 0644
UserList.pyc File 6.42 KB 0644
UserList.pyo File 6.42 KB 0644
UserString.py File 9.46 KB 0755
UserString.pyc File 14.52 KB 0644
UserString.pyo File 14.52 KB 0644
_LWPCookieJar.py File 6.4 KB 0644
_LWPCookieJar.pyc File 5.4 KB 0644
_LWPCookieJar.pyo File 5.4 KB 0644
_MozillaCookieJar.py File 5.67 KB 0644
_MozillaCookieJar.pyc File 4.37 KB 0644
_MozillaCookieJar.pyo File 4.33 KB 0644
__future__.py File 4.28 KB 0644
__future__.pyc File 4.13 KB 0644
__future__.pyo File 4.13 KB 0644
__phello__.foo.py File 64 B 0644
__phello__.foo.pyc File 125 B 0644
__phello__.foo.pyo File 125 B 0644
_abcoll.py File 17.45 KB 0644
_abcoll.pyc File 24.4 KB 0644
_abcoll.pyo File 24.4 KB 0644
_osx_support.py File 18.03 KB 0644
_osx_support.pyc File 11.28 KB 0644
_osx_support.pyo File 11.28 KB 0644
_pyio.py File 67.24 KB 0644
_pyio.pyc File 62.71 KB 0644
_pyio.pyo File 62.71 KB 0644
_strptime.py File 19.75 KB 0644
_strptime.pyc File 14.53 KB 0644
_strptime.pyo File 14.53 KB 0644
_sysconfigdata.py File 17.56 KB 0644
_sysconfigdata.pyc File 20.72 KB 0644
_sysconfigdata.pyo File 20.72 KB 0644
_threading_local.py File 7.28 KB 0644
_threading_local.pyc File 6.45 KB 0644
_threading_local.pyo File 6.45 KB 0644
_weakrefset.py File 5.48 KB 0644
_weakrefset.pyc File 9.25 KB 0644
_weakrefset.pyo File 9.25 KB 0644
abc.py File 6.98 KB 0644
abc.pyc File 6 KB 0644
abc.pyo File 5.94 KB 0644
aifc.py File 32.94 KB 0644
aifc.pyc File 29.31 KB 0644
aifc.pyo File 29.31 KB 0644
antigravity.py File 60 B 0644
antigravity.pyc File 203 B 0644
antigravity.pyo File 203 B 0644
anydbm.py File 2.6 KB 0644
anydbm.pyc File 2.73 KB 0644
anydbm.pyo File 2.73 KB 0644
argparse.py File 86.46 KB 0644
argparse.pyc File 62.57 KB 0644
argparse.pyo File 62.41 KB 0644
ast.py File 11.53 KB 0644
ast.pyc File 12.65 KB 0644
ast.pyo File 12.65 KB 0644
asynchat.py File 11.13 KB 0644
asynchat.pyc File 8.44 KB 0644
asynchat.pyo File 8.44 KB 0644
asyncore.py File 20.36 KB 0644
asyncore.pyc File 18.4 KB 0644
asyncore.pyo File 18.4 KB 0644
atexit.py File 1.67 KB 0644
atexit.pyc File 2.15 KB 0644
atexit.pyo File 2.15 KB 0644
audiodev.py File 7.42 KB 0644
audiodev.pyc File 8.27 KB 0644
audiodev.pyo File 8.27 KB 0644
base64.py File 11.09 KB 0755
base64.pyc File 10.63 KB 0644
base64.pyo File 10.63 KB 0644
bdb.py File 21.21 KB 0644
bdb.pyc File 18.65 KB 0644
bdb.pyo File 18.65 KB 0644
binhex.py File 14.14 KB 0644
binhex.pyc File 15.04 KB 0644
binhex.pyo File 15.04 KB 0644
bisect.py File 2.53 KB 0644
bisect.pyc File 3 KB 0644
bisect.pyo File 3 KB 0644
cProfile.py File 6.43 KB 0755
cProfile.pyc File 6.25 KB 0644
cProfile.pyo File 6.25 KB 0644
calendar.py File 22.76 KB 0644
calendar.pyc File 27.13 KB 0644
calendar.pyo File 27.13 KB 0644
cgi.py File 33.68 KB 0755
cgi.pyc File 31.71 KB 0644
cgi.pyo File 31.71 KB 0644
cgitb.py File 11.89 KB 0644
cgitb.pyc File 11.9 KB 0644
cgitb.pyo File 11.9 KB 0644
chunk.py File 5.25 KB 0644
chunk.pyc File 5.46 KB 0644
chunk.pyo File 5.46 KB 0644
cmd.py File 14.67 KB 0644
cmd.pyc File 13.71 KB 0644
cmd.pyo File 13.71 KB 0644
code.py File 9.95 KB 0644
code.pyc File 10.09 KB 0644
code.pyo File 10.09 KB 0644
codecs.py File 34.44 KB 0644
codecs.pyc File 35.74 KB 0644
codecs.pyo File 35.74 KB 0644
codeop.py File 5.86 KB 0644
codeop.pyc File 6.44 KB 0644
codeop.pyo File 6.44 KB 0644
collections.py File 25.28 KB 0644
collections.pyc File 23.99 KB 0644
collections.pyo File 23.94 KB 0644
colorsys.py File 3.6 KB 0644
colorsys.pyc File 3.9 KB 0644
colorsys.pyo File 3.9 KB 0644
commands.py File 2.49 KB 0644
commands.pyc File 2.41 KB 0644
commands.pyo File 2.41 KB 0644
compileall.py File 7.58 KB 0644
compileall.pyc File 6.85 KB 0644
compileall.pyo File 6.85 KB 0644
contextlib.py File 4.32 KB 0644
contextlib.pyc File 4.35 KB 0644
contextlib.pyo File 4.35 KB 0644
cookielib.py File 63.21 KB 0644
cookielib.pyc File 53.55 KB 0644
cookielib.pyo File 53.37 KB 0644
copy.py File 11.25 KB 0644
copy.pyc File 11.91 KB 0644
copy.pyo File 11.82 KB 0644
copy_reg.py File 6.64 KB 0644
copy_reg.pyc File 4.99 KB 0644
copy_reg.pyo File 4.95 KB 0644
crypt.py File 2.24 KB 0644
crypt.pyc File 2.89 KB 0644
crypt.pyo File 2.89 KB 0644
csv.py File 15.96 KB 0644
csv.pyc File 13.14 KB 0644
csv.pyo File 13.14 KB 0644
dbhash.py File 498 B 0644
dbhash.pyc File 718 B 0644
dbhash.pyo File 718 B 0644
decimal.py File 215.84 KB 0644
decimal.pyc File 167.33 KB 0644
decimal.pyo File 167.33 KB 0644
difflib.py File 80.42 KB 0644
difflib.pyc File 60.5 KB 0644
difflib.pyo File 60.45 KB 0644
dircache.py File 1.1 KB 0644
dircache.pyc File 1.54 KB 0644
dircache.pyo File 1.54 KB 0644
dis.py File 6.35 KB 0644
dis.pyc File 6.08 KB 0644
dis.pyo File 6.08 KB 0644
doctest.py File 102.01 KB 0644
doctest.pyc File 81.45 KB 0644
doctest.pyo File 81.17 KB 0644
dumbdbm.py File 8.61 KB 0644
dumbdbm.pyc File 6.41 KB 0644
dumbdbm.pyo File 6.41 KB 0644
dummy_thread.py File 4.31 KB 0644
dummy_thread.pyc File 5.27 KB 0644
dummy_thread.pyo File 5.27 KB 0644
dummy_threading.py File 2.74 KB 0644
dummy_threading.pyc File 1.25 KB 0644
dummy_threading.pyo File 1.25 KB 0644
filecmp.py File 9.36 KB 0644
filecmp.pyc File 9.4 KB 0644
filecmp.pyo File 9.4 KB 0644
fileinput.py File 13.81 KB 0644
fileinput.pyc File 14.48 KB 0644
fileinput.pyo File 14.48 KB 0644
fnmatch.py File 3.16 KB 0644
fnmatch.pyc File 3.45 KB 0644
fnmatch.pyo File 3.45 KB 0644
formatter.py File 14.56 KB 0644
formatter.pyc File 18.73 KB 0644
formatter.pyo File 18.73 KB 0644
fpformat.py File 4.59 KB 0644
fpformat.pyc File 4.56 KB 0644
fpformat.pyo File 4.56 KB 0644
fractions.py File 21.87 KB 0644
fractions.pyc File 19.27 KB 0644
fractions.pyo File 19.27 KB 0644
ftplib.py File 36.1 KB 0644
ftplib.pyc File 33.38 KB 0644
ftplib.pyo File 33.38 KB 0644
functools.py File 4.37 KB 0644
functools.pyc File 5.95 KB 0644
functools.pyo File 5.95 KB 0644
genericpath.py File 2.94 KB 0644
genericpath.pyc File 3.19 KB 0644
genericpath.pyo File 3.19 KB 0644
getopt.py File 7.15 KB 0644
getopt.pyc File 6.5 KB 0644
getopt.pyo File 6.45 KB 0644
getpass.py File 5.43 KB 0644
getpass.pyc File 4.63 KB 0644
getpass.pyo File 4.63 KB 0644
gettext.py File 19.47 KB 0644
gettext.pyc File 15.19 KB 0644
gettext.pyo File 15.19 KB 0644
glob.py File 2.86 KB 0644
glob.pyc File 2.83 KB 0644
glob.pyo File 2.83 KB 0644
gzip.py File 18.26 KB 0644
gzip.pyc File 14.72 KB 0644
gzip.pyo File 14.72 KB 0644
hashlib.py File 7.48 KB 0644
hashlib.pyc File 6.74 KB 0644
hashlib.pyo File 6.74 KB 0644
heapq.py File 17.76 KB 0644
heapq.pyc File 14.13 KB 0644
heapq.pyo File 14.13 KB 0644
hmac.py File 4.48 KB 0644
hmac.pyc File 4.44 KB 0644
hmac.pyo File 4.44 KB 0644
htmlentitydefs.py File 17.63 KB 0644
htmlentitydefs.pyc File 6.22 KB 0644
htmlentitydefs.pyo File 6.22 KB 0644
htmllib.py File 12.57 KB 0644
htmllib.pyc File 19.83 KB 0644
htmllib.pyo File 19.83 KB 0644
httplib.py File 51.37 KB 0644
httplib.pyc File 37.54 KB 0644
httplib.pyo File 37.37 KB 0644
ihooks.py File 18.54 KB 0644
ihooks.pyc File 20.87 KB 0644
ihooks.pyo File 20.87 KB 0644
imaplib.py File 47.14 KB 0644
imaplib.pyc File 44.28 KB 0644
imaplib.pyo File 41.63 KB 0644
imghdr.py File 3.46 KB 0644
imghdr.pyc File 4.73 KB 0644
imghdr.pyo File 4.73 KB 0644
imputil.py File 25.16 KB 0644
imputil.pyc File 15.26 KB 0644
imputil.pyo File 15.08 KB 0644
inspect.py File 41.47 KB 0644
inspect.pyc File 39.04 KB 0644
inspect.pyo File 39.04 KB 0644
io.py File 3.12 KB 0644
io.pyc File 3.4 KB 0644
io.pyo File 3.4 KB 0644
keyword.py File 1.95 KB 0755
keyword.pyc File 2.06 KB 0644
keyword.pyo File 2.06 KB 0644
linecache.py File 3.87 KB 0644
linecache.pyc File 3.14 KB 0644
linecache.pyo File 3.14 KB 0644
locale.py File 87.33 KB 0644
locale.pyc File 48.77 KB 0644
locale.pyo File 48.77 KB 0644
macpath.py File 6.11 KB 0644
macpath.pyc File 7.47 KB 0644
macpath.pyo File 7.47 KB 0644
macurl2path.py File 3.2 KB 0644
macurl2path.pyc File 2.71 KB 0644
macurl2path.pyo File 2.71 KB 0644
mailbox.py File 78.86 KB 0644
mailbox.pyc File 74.87 KB 0644
mailbox.pyo File 74.82 KB 0644
mailcap.py File 7.25 KB 0644
mailcap.pyc File 6.92 KB 0644
mailcap.pyo File 6.92 KB 0644
markupbase.py File 14.3 KB 0644
markupbase.pyc File 9.08 KB 0644
markupbase.pyo File 8.89 KB 0644
md5.py File 358 B 0644
md5.pyc File 378 B 0644
md5.pyo File 378 B 0644
mhlib.py File 32.65 KB 0644
mhlib.pyc File 33.01 KB 0644
mhlib.pyo File 33.01 KB 0644
mimetools.py File 7 KB 0644
mimetools.pyc File 8.03 KB 0644
mimetools.pyo File 8.03 KB 0644
mimetypes.py File 20.22 KB 0644
mimetypes.pyc File 17.86 KB 0644
mimetypes.pyo File 17.86 KB 0644
mimify.py File 14.67 KB 0755
mimify.pyc File 11.71 KB 0644
mimify.pyo File 11.71 KB 0644
modulefinder.py File 23.71 KB 0644
modulefinder.pyc File 18.27 KB 0644
modulefinder.pyo File 18.19 KB 0644
multifile.py File 4.71 KB 0644
multifile.pyc File 5.29 KB 0644
multifile.pyo File 5.25 KB 0644
mutex.py File 1.83 KB 0644
mutex.pyc File 2.46 KB 0644
mutex.pyo File 2.46 KB 0644
netrc.py File 4.47 KB 0644
netrc.pyc File 3.83 KB 0644
netrc.pyo File 3.83 KB 0644
new.py File 610 B 0644
new.pyc File 862 B 0644
new.pyo File 862 B 0644
nntplib.py File 20.97 KB 0644
nntplib.pyc File 20.55 KB 0644
nntplib.pyo File 20.55 KB 0644
ntpath.py File 18.02 KB 0644
ntpath.pyc File 11.6 KB 0644
ntpath.pyo File 11.56 KB 0644
nturl2path.py File 2.32 KB 0644
nturl2path.pyc File 1.77 KB 0644
nturl2path.pyo File 1.77 KB 0644
numbers.py File 10.08 KB 0644
numbers.pyc File 13.68 KB 0644
numbers.pyo File 13.68 KB 0644
opcode.py File 5.35 KB 0644
opcode.pyc File 6 KB 0644
opcode.pyo File 6 KB 0644
optparse.py File 59.69 KB 0644
optparse.pyc File 52.78 KB 0644
optparse.pyo File 52.7 KB 0644
os.py File 25.17 KB 0644
os.pyc File 24.96 KB 0644
os.pyo File 24.96 KB 0644
os2emxpath.py File 4.5 KB 0644
os2emxpath.pyc File 4.39 KB 0644
os2emxpath.pyo File 4.39 KB 0644
pdb.doc File 7.73 KB 0644
pdb.py File 44.94 KB 0755
pdb.pyc File 42.59 KB 0644
pdb.pyo File 42.59 KB 0644
pickle.py File 44.09 KB 0644
pickle.pyc File 37.56 KB 0644
pickle.pyo File 37.37 KB 0644
pickletools.py File 72.79 KB 0644
pickletools.pyc File 55.77 KB 0644
pickletools.pyo File 54.95 KB 0644
pipes.py File 9.36 KB 0644
pipes.pyc File 9.09 KB 0644
pipes.pyo File 9.09 KB 0644
pkgutil.py File 19.87 KB 0644
pkgutil.pyc File 18.49 KB 0644
pkgutil.pyo File 18.49 KB 0644
platform.py File 51.97 KB 0755
platform.pyc File 36.04 KB 0644
platform.pyo File 36.04 KB 0644
plistlib.py File 15.44 KB 0644
plistlib.pyc File 19.52 KB 0644
plistlib.pyo File 19.44 KB 0644
popen2.py File 8.22 KB 0644
popen2.pyc File 8.81 KB 0644
popen2.pyo File 8.77 KB 0644
poplib.py File 12.52 KB 0644
poplib.pyc File 13.03 KB 0644
poplib.pyo File 13.03 KB 0644
posixfile.py File 7.82 KB 0644
posixfile.pyc File 7.47 KB 0644
posixfile.pyo File 7.47 KB 0644
posixpath.py File 13.27 KB 0644
posixpath.pyc File 11.03 KB 0644
posixpath.pyo File 11.03 KB 0644
pprint.py File 11.73 KB 0644
pprint.pyc File 10.06 KB 0644
pprint.pyo File 9.89 KB 0644
profile.py File 22.25 KB 0755
profile.pyc File 16.07 KB 0644
profile.pyo File 15.83 KB 0644
pstats.py File 26.08 KB 0644
pstats.pyc File 24.43 KB 0644
pstats.pyo File 24.43 KB 0644
pty.py File 4.94 KB 0644
pty.pyc File 4.85 KB 0644
pty.pyo File 4.85 KB 0644
py_compile.py File 5.79 KB 0644
py_compile.pyc File 6.27 KB 0644
py_compile.pyo File 6.27 KB 0644
pyclbr.py File 13.07 KB 0644
pyclbr.pyc File 9.42 KB 0644
pyclbr.pyo File 9.42 KB 0644
pydoc.py File 91.12 KB 0755
pydoc.pyc File 88.35 KB 0644
pydoc.pyo File 88.29 KB 0644
quopri.py File 6.81 KB 0755
quopri.pyc File 6.42 KB 0644
quopri.pyo File 6.42 KB 0644
random.py File 31.45 KB 0644
random.pyc File 24.99 KB 0644
random.pyo File 24.99 KB 0644
re.py File 12.66 KB 0644
re.pyc File 12.79 KB 0644
re.pyo File 12.79 KB 0644
repr.py File 4.2 KB 0644
repr.pyc File 5.26 KB 0644
repr.pyo File 5.26 KB 0644
rexec.py File 19.68 KB 0644
rexec.pyc File 23.58 KB 0644
rexec.pyo File 23.58 KB 0644
rfc822.py File 32.51 KB 0644
rfc822.pyc File 31.05 KB 0644
rfc822.pyo File 31.05 KB 0644
rlcompleter.py File 5.68 KB 0644
rlcompleter.pyc File 5.84 KB 0644
rlcompleter.pyo File 5.84 KB 0644
robotparser.py File 7.03 KB 0644
robotparser.pyc File 7.7 KB 0644
robotparser.pyo File 7.7 KB 0644
runpy.py File 10.45 KB 0644
runpy.pyc File 8.21 KB 0644
runpy.pyo File 8.21 KB 0644
sched.py File 4.97 KB 0644
sched.pyc File 4.88 KB 0644
sched.pyo File 4.88 KB 0644
sets.py File 18.6 KB 0644
sets.pyc File 16.5 KB 0644
sets.pyo File 16.5 KB 0644
sgmllib.py File 17.46 KB 0644
sgmllib.pyc File 15.07 KB 0644
sgmllib.pyo File 15.07 KB 0644
sha.py File 393 B 0644
sha.pyc File 421 B 0644
sha.pyo File 421 B 0644
shelve.py File 7.89 KB 0644
shelve.pyc File 10.03 KB 0644
shelve.pyo File 10.03 KB 0644
shlex.py File 10.88 KB 0644
shlex.pyc File 7.37 KB 0644
shlex.pyo File 7.37 KB 0644
shutil.py File 18.46 KB 0644
shutil.pyc File 18.1 KB 0644
shutil.pyo File 18.1 KB 0644
site.py File 19.61 KB 0644
site.pyc File 19.11 KB 0644
site.pyo File 19.11 KB 0644
smtpd.py File 18.11 KB 0755
smtpd.pyc File 15.52 KB 0644
smtpd.pyo File 15.52 KB 0644
smtplib.py File 30.9 KB 0755
smtplib.pyc File 29.29 KB 0644
smtplib.pyo File 29.29 KB 0644
sndhdr.py File 5.83 KB 0644
sndhdr.pyc File 7.18 KB 0644
sndhdr.pyo File 7.18 KB 0644
socket.py File 20.03 KB 0644
socket.pyc File 15.73 KB 0644
socket.pyo File 15.64 KB 0644
sre.py File 384 B 0644
sre.pyc File 519 B 0644
sre.pyo File 519 B 0644
sre_compile.py File 15.99 KB 0644
sre_compile.pyc File 10.76 KB 0644
sre_compile.pyo File 10.65 KB 0644
sre_constants.py File 6.95 KB 0644
sre_constants.pyc File 5.97 KB 0644
sre_constants.pyo File 5.97 KB 0644
sre_parse.py File 26.84 KB 0644
sre_parse.pyc File 18.98 KB 0644
sre_parse.pyo File 18.98 KB 0644
ssl.py File 38.7 KB 0644
ssl.pyc File 32.05 KB 0644
ssl.pyo File 32.05 KB 0644
stat.py File 1.8 KB 0644
stat.pyc File 2.69 KB 0644
stat.pyo File 2.69 KB 0644
statvfs.py File 898 B 0644
statvfs.pyc File 620 B 0644
statvfs.pyo File 620 B 0644
string.py File 20.27 KB 0644
string.pyc File 19.54 KB 0644
string.pyo File 19.54 KB 0644
stringold.py File 12.16 KB 0644
stringold.pyc File 12.25 KB 0644
stringold.pyo File 12.25 KB 0644
stringprep.py File 13.21 KB 0644
stringprep.pyc File 14.15 KB 0644
stringprep.pyo File 14.08 KB 0644
struct.py File 82 B 0644
struct.pyc File 239 B 0644
struct.pyo File 239 B 0644
subprocess.py File 57.68 KB 0644
subprocess.pyc File 40.93 KB 0644
subprocess.pyo File 40.93 KB 0644
sunau.py File 16.15 KB 0644
sunau.pyc File 17.53 KB 0644
sunau.pyo File 17.53 KB 0644
sunaudio.py File 1.37 KB 0644
sunaudio.pyc File 1.94 KB 0644
sunaudio.pyo File 1.94 KB 0644
symbol.py File 2.01 KB 0755
symbol.pyc File 2.96 KB 0644
symbol.pyo File 2.96 KB 0644
symtable.py File 7.34 KB 0644
symtable.pyc File 11.59 KB 0644
symtable.pyo File 11.46 KB 0644
sysconfig.py File 21.88 KB 0644
sysconfig.pyc File 17.23 KB 0644
sysconfig.pyo File 17.23 KB 0644
tabnanny.py File 11.07 KB 0755
tabnanny.pyc File 8.05 KB 0644
tabnanny.pyo File 8.05 KB 0644
tarfile.py File 88 KB 0644
tarfile.pyc File 73.78 KB 0644
tarfile.pyo File 73.78 KB 0644
telnetlib.py File 26.18 KB 0644
telnetlib.pyc File 22.53 KB 0644
telnetlib.pyo File 22.53 KB 0644
tempfile.py File 17.91 KB 0644
tempfile.pyc File 19.35 KB 0644
tempfile.pyo File 19.35 KB 0644
textwrap.py File 16.64 KB 0644
textwrap.pyc File 11.62 KB 0644
textwrap.pyo File 11.53 KB 0644
this.py File 1002 B 0644
this.pyc File 1.19 KB 0644
this.pyo File 1.19 KB 0644
threading.py File 46.28 KB 0644
threading.pyc File 41.7 KB 0644
threading.pyo File 39.58 KB 0644
timeit.py File 11.82 KB 0644
timeit.pyc File 11.5 KB 0644
timeit.pyo File 11.5 KB 0644
toaiff.py File 3.07 KB 0644
toaiff.pyc File 3.03 KB 0644
toaiff.pyo File 3.03 KB 0644
token.py File 2.88 KB 0755
token.pyc File 3.73 KB 0644
token.pyo File 3.73 KB 0644
tokenize.py File 16.15 KB 0644
tokenize.pyc File 13.61 KB 0644
tokenize.pyo File 13.52 KB 0644
trace.py File 29.19 KB 0644
trace.pyc File 22.26 KB 0644
trace.pyo File 22.2 KB 0644
traceback.py File 10.99 KB 0644
traceback.pyc File 11.35 KB 0644
traceback.pyo File 11.35 KB 0644
tty.py File 879 B 0644
tty.pyc File 1.29 KB 0644
tty.pyo File 1.29 KB 0644
types.py File 1.99 KB 0644
types.pyc File 2.45 KB 0644
types.pyo File 2.45 KB 0644
urllib.py File 57.14 KB 0644
urllib.pyc File 49.1 KB 0644
urllib.pyo File 49 KB 0644
urllib2.py File 51.87 KB 0644
urllib2.pyc File 46.61 KB 0644
urllib2.pyo File 46.52 KB 0644
urlparse.py File 16.44 KB 0644
urlparse.pyc File 15.38 KB 0644
urlparse.pyo File 15.38 KB 0644
user.py File 1.59 KB 0644
user.pyc File 1.68 KB 0644
user.pyo File 1.68 KB 0644
uu.py File 6.4 KB 0755
uu.pyc File 4.21 KB 0644
uu.pyo File 4.21 KB 0644
uuid.py File 20.6 KB 0644
uuid.pyc File 20.68 KB 0644
uuid.pyo File 20.68 KB 0644
warnings.py File 13.71 KB 0644
warnings.pyc File 12.84 KB 0644
warnings.pyo File 12.02 KB 0644
wave.py File 17.67 KB 0644
wave.pyc File 19 KB 0644
wave.pyo File 18.94 KB 0644
weakref.py File 10.44 KB 0644
weakref.pyc File 13.72 KB 0644
weakref.pyo File 13.72 KB 0644
webbrowser.py File 22.19 KB 0644
webbrowser.pyc File 19.32 KB 0644
webbrowser.pyo File 19.27 KB 0644
whichdb.py File 3.3 KB 0644
whichdb.pyc File 2.19 KB 0644
whichdb.pyo File 2.19 KB 0644
wsgiref.egg-info File 187 B 0644
xdrlib.py File 5.43 KB 0644
xdrlib.pyc File 9.07 KB 0644
xdrlib.pyo File 9.07 KB 0644
xmllib.py File 34.05 KB 0644
xmllib.pyc File 26.22 KB 0644
xmllib.pyo File 26.22 KB 0644
xmlrpclib.py File 50.78 KB 0644
xmlrpclib.pyc File 42.89 KB 0644
xmlrpclib.pyo File 42.71 KB 0644
zipfile.py File 56.45 KB 0644
zipfile.pyc File 40.33 KB 0644
zipfile.pyo File 40.33 KB 0644