[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@18.227.46.202: ~ $
:mod:`SocketServer` --- A framework for network servers
=======================================================

.. module:: SocketServer
   :synopsis: A framework for network servers.

.. note::

   The :mod:`SocketServer` module has been renamed to :mod:`socketserver` in
   Python 3.  The :term:`2to3` tool will automatically adapt imports when
   converting your sources to Python 3.

**Source code:** :source:`Lib/SocketServer.py`

--------------

The :mod:`SocketServer` module simplifies the task of writing network servers.

There are four basic server classes: :class:`TCPServer` uses the Internet TCP
protocol, which provides for continuous streams of data between the client and
server.  :class:`UDPServer` uses datagrams, which are discrete packets of
information that may arrive out of order or be lost while in transit.  The more
infrequently used :class:`UnixStreamServer` and :class:`UnixDatagramServer`
classes are similar, but use Unix domain sockets; they're not available on
non-Unix platforms.  For more details on network programming, consult a book
such as
W. Richard Steven's UNIX Network Programming or Ralph Davis's Win32 Network
Programming.

These four classes process requests :dfn:`synchronously`; each request must be
completed before the next request can be started.  This isn't suitable if each
request takes a long time to complete, because it requires a lot of computation,
or because it returns a lot of data which the client is slow to process.  The
solution is to create a separate process or thread to handle each request; the
:class:`ForkingMixIn` and :class:`ThreadingMixIn` mix-in classes can be used to
support asynchronous behaviour.

Creating a server requires several steps.  First, you must create a request
handler class by subclassing the :class:`BaseRequestHandler` class and
overriding its :meth:`handle` method; this method will process incoming
requests.  Second, you must instantiate one of the server classes, passing it
the server's address and the request handler class.  Finally, call the
:meth:`handle_request` or :meth:`serve_forever` method of the server object to
process one or many requests.

When inheriting from :class:`ThreadingMixIn` for threaded connection behavior,
you should explicitly declare how you want your threads to behave on an abrupt
shutdown. The :class:`ThreadingMixIn` class defines an attribute
*daemon_threads*, which indicates whether or not the server should wait for
thread termination. You should set the flag explicitly if you would like threads
to behave autonomously; the default is :const:`False`, meaning that Python will
not exit until all threads created by :class:`ThreadingMixIn` have exited.

Server classes have the same external methods and attributes, no matter what
network protocol they use.


Server Creation Notes
---------------------

There are five classes in an inheritance diagram, four of which represent
synchronous servers of four types::

   +------------+
   | BaseServer |
   +------------+
         |
         v
   +-----------+        +------------------+
   | TCPServer |------->| UnixStreamServer |
   +-----------+        +------------------+
         |
         v
   +-----------+        +--------------------+
   | UDPServer |------->| UnixDatagramServer |
   +-----------+        +--------------------+

Note that :class:`UnixDatagramServer` derives from :class:`UDPServer`, not from
:class:`UnixStreamServer` --- the only difference between an IP and a Unix
stream server is the address family, which is simply repeated in both Unix
server classes.

Forking and threading versions of each type of server can be created using the
:class:`ForkingMixIn` and :class:`ThreadingMixIn` mix-in classes.  For instance,
a threading UDP server class is created as follows::

   class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass

The mix-in class must come first, since it overrides a method defined in
:class:`UDPServer`.  Setting the various attributes also change the
behavior of the underlying server mechanism.

To implement a service, you must derive a class from :class:`BaseRequestHandler`
and redefine its :meth:`handle` method.  You can then run various versions of
the service by combining one of the server classes with your request handler
class.  The request handler class must be different for datagram or stream
services.  This can be hidden by using the handler subclasses
:class:`StreamRequestHandler` or :class:`DatagramRequestHandler`.

Of course, you still have to use your head!  For instance, it makes no sense to
use a forking server if the service contains state in memory that can be
modified by different requests, since the modifications in the child process
would never reach the initial state kept in the parent process and passed to
each child.  In this case, you can use a threading server, but you will probably
have to use locks to protect the integrity of the shared data.

On the other hand, if you are building an HTTP server where all data is stored
externally (for instance, in the file system), a synchronous class will
essentially render the service "deaf" while one request is being handled --
which may be for a very long time if a client is slow to receive all the data it
has requested.  Here a threading or forking server is appropriate.

In some cases, it may be appropriate to process part of a request synchronously,
but to finish processing in a forked child depending on the request data.  This
can be implemented by using a synchronous server and doing an explicit fork in
the request handler class :meth:`handle` method.

Another approach to handling multiple simultaneous requests in an environment
that supports neither threads nor :func:`fork` (or where these are too expensive
or inappropriate for the service) is to maintain an explicit table of partially
finished requests and to use :func:`select` to decide which request to work on
next (or whether to handle a new incoming request).  This is particularly
important for stream services where each client can potentially be connected for
a long time (if threads or subprocesses cannot be used). See :mod:`asyncore` for
another way to manage this.

.. XXX should data and methods be intermingled, or separate?
   how should the distinction between class and instance variables be drawn?


Server Objects
--------------

.. class:: BaseServer

   This is the superclass of all Server objects in the module.  It defines the
   interface, given below, but does not implement most of the methods, which is
   done in subclasses.


.. method:: BaseServer.fileno()

   Return an integer file descriptor for the socket on which the server is
   listening.  This function is most commonly passed to :func:`select.select`, to
   allow monitoring multiple servers in the same process.


.. method:: BaseServer.handle_request()

   Process a single request.  This function calls the following methods in
   order: :meth:`get_request`, :meth:`verify_request`, and
   :meth:`process_request`.  If the user-provided :meth:`handle` method of the
   handler class raises an exception, the server's :meth:`handle_error` method
   will be called.  If no request is received within :attr:`self.timeout`
   seconds, :meth:`handle_timeout` will be called and :meth:`handle_request`
   will return.


.. method:: BaseServer.serve_forever(poll_interval=0.5)

   Handle requests until an explicit :meth:`shutdown` request.
   Poll for shutdown every *poll_interval* seconds. Ignores :attr:`self.timeout`.
   If you need to do periodic tasks, do them in another thread.


.. method:: BaseServer.shutdown()

   Tell the :meth:`serve_forever` loop to stop and wait until it does.

   .. versionadded:: 2.6


.. attribute:: BaseServer.address_family

   The family of protocols to which the server's socket belongs.
   Common examples are :const:`socket.AF_INET` and :const:`socket.AF_UNIX`.


.. attribute:: BaseServer.RequestHandlerClass

   The user-provided request handler class; an instance of this class is created
   for each request.


.. attribute:: BaseServer.server_address

   The address on which the server is listening.  The format of addresses varies
   depending on the protocol family; see the documentation for the socket module
   for details.  For Internet protocols, this is a tuple containing a string giving
   the address, and an integer port number: ``('127.0.0.1', 80)``, for example.


.. attribute:: BaseServer.socket

   The socket object on which the server will listen for incoming requests.


The server classes support the following class variables:

.. XXX should class variables be covered before instance variables, or vice versa?

.. attribute:: BaseServer.allow_reuse_address

   Whether the server will allow the reuse of an address. This defaults to
   :const:`False`, and can be set in subclasses to change the policy.


.. attribute:: BaseServer.request_queue_size

   The size of the request queue.  If it takes a long time to process a single
   request, any requests that arrive while the server is busy are placed into a
   queue, up to :attr:`request_queue_size` requests.  Once the queue is full,
   further requests from clients will get a "Connection denied" error.  The default
   value is usually 5, but this can be overridden by subclasses.


.. attribute:: BaseServer.socket_type

   The type of socket used by the server; :const:`socket.SOCK_STREAM` and
   :const:`socket.SOCK_DGRAM` are two common values.


.. attribute:: BaseServer.timeout

   Timeout duration, measured in seconds, or :const:`None` if no timeout is
   desired.  If :meth:`handle_request` receives no incoming requests within the
   timeout period, the :meth:`handle_timeout` method is called.


There are various server methods that can be overridden by subclasses of base
server classes like :class:`TCPServer`; these methods aren't useful to external
users of the server object.

.. XXX should the default implementations of these be documented, or should
   it be assumed that the user will look at SocketServer.py?

.. method:: BaseServer.finish_request()

   Actually processes the request by instantiating :attr:`RequestHandlerClass` and
   calling its :meth:`handle` method.


.. method:: BaseServer.get_request()

   Must accept a request from the socket, and return a 2-tuple containing the *new*
   socket object to be used to communicate with the client, and the client's
   address.


.. method:: BaseServer.handle_error(request, client_address)

   This function is called if the :attr:`RequestHandlerClass`'s :meth:`handle`
   method raises an exception.  The default action is to print the traceback to
   standard output and continue handling further requests.


.. method:: BaseServer.handle_timeout()

   This function is called when the :attr:`timeout` attribute has been set to a
   value other than :const:`None` and the timeout period has passed with no
   requests being received.  The default action for forking servers is
   to collect the status of any child processes that have exited, while
   in threading servers this method does nothing.


.. method:: BaseServer.process_request(request, client_address)

   Calls :meth:`finish_request` to create an instance of the
   :attr:`RequestHandlerClass`.  If desired, this function can create a new process
   or thread to handle the request; the :class:`ForkingMixIn` and
   :class:`ThreadingMixIn` classes do this.


.. Is there any point in documenting the following two functions?
   What would the purpose of overriding them be: initializing server
   instance variables, adding new network families?

.. method:: BaseServer.server_activate()

   Called by the server's constructor to activate the server.  The default behavior
   just :meth:`listen`\ s to the server's socket. May be overridden.


.. method:: BaseServer.server_bind()

   Called by the server's constructor to bind the socket to the desired address.
   May be overridden.


.. method:: BaseServer.verify_request(request, client_address)

   Must return a Boolean value; if the value is :const:`True`, the request will be
   processed, and if it's :const:`False`, the request will be denied. This function
   can be overridden to implement access controls for a server. The default
   implementation always returns :const:`True`.


RequestHandler Objects
----------------------

The request handler class must define a new :meth:`handle` method, and can
override any of the following methods.  A new instance is created for each
request.


.. method:: RequestHandler.finish()

   Called after the :meth:`handle` method to perform any clean-up actions
   required.  The default implementation does nothing.  If :meth:`setup`
   raises an exception, this function will not be called.


.. method:: RequestHandler.handle()

   This function must do all the work required to service a request.  The
   default implementation does nothing.  Several instance attributes are
   available to it; the request is available as :attr:`self.request`; the client
   address as :attr:`self.client_address`; and the server instance as
   :attr:`self.server`, in case it needs access to per-server information.

   The type of :attr:`self.request` is different for datagram or stream
   services.  For stream services, :attr:`self.request` is a socket object; for
   datagram services, :attr:`self.request` is a pair of string and socket.
   However, this can be hidden by using the request handler subclasses
   :class:`StreamRequestHandler` or :class:`DatagramRequestHandler`, which
   override the :meth:`setup` and :meth:`finish` methods, and provide
   :attr:`self.rfile` and :attr:`self.wfile` attributes.  :attr:`self.rfile` and
   :attr:`self.wfile` can be read or written, respectively, to get the request
   data or return data to the client.


.. method:: RequestHandler.setup()

   Called before the :meth:`handle` method to perform any initialization actions
   required.  The default implementation does nothing.


Examples
--------

:class:`SocketServer.TCPServer` Example
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This is the server side::

   import SocketServer

   class MyTCPHandler(SocketServer.BaseRequestHandler):
       """
       The RequestHandler class for our server.

       It is instantiated once per connection to the server, and must
       override the handle() method to implement communication to the
       client.
       """

       def handle(self):
           # self.request is the TCP socket connected to the client
           self.data = self.request.recv(1024).strip()
           print "{} wrote:".format(self.client_address[0])
           print self.data
           # just send back the same data, but upper-cased
           self.request.sendall(self.data.upper())

   if __name__ == "__main__":
       HOST, PORT = "localhost", 9999

       # Create the server, binding to localhost on port 9999
       server = SocketServer.TCPServer((HOST, PORT), MyTCPHandler)

       # Activate the server; this will keep running until you
       # interrupt the program with Ctrl-C
       server.serve_forever()

An alternative request handler class that makes use of streams (file-like
objects that simplify communication by providing the standard file interface)::

   class MyTCPHandler(SocketServer.StreamRequestHandler):

       def handle(self):
           # self.rfile is a file-like object created by the handler;
           # we can now use e.g. readline() instead of raw recv() calls
           self.data = self.rfile.readline().strip()
           print "{} wrote:".format(self.client_address[0])
           print self.data
           # Likewise, self.wfile is a file-like object used to write back
           # to the client
           self.wfile.write(self.data.upper())

The difference is that the ``readline()`` call in the second handler will call
``recv()`` multiple times until it encounters a newline character, while the
single ``recv()`` call in the first handler will just return what has been sent
from the client in one ``sendall()`` call.


This is the client side::

   import socket
   import sys

   HOST, PORT = "localhost", 9999
   data = " ".join(sys.argv[1:])

   # Create a socket (SOCK_STREAM means a TCP socket)
   sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

   try:
       # Connect to server and send data
       sock.connect((HOST, PORT))
       sock.sendall(data + "\n")

       # Receive data from the server and shut down
       received = sock.recv(1024)
   finally:
       sock.close()

   print "Sent:     {}".format(data)
   print "Received: {}".format(received)


The output of the example should look something like this:

Server::

   $ python TCPServer.py
   127.0.0.1 wrote:
   hello world with TCP
   127.0.0.1 wrote:
   python is nice

Client::

   $ python TCPClient.py hello world with TCP
   Sent:     hello world with TCP
   Received: HELLO WORLD WITH TCP
   $ python TCPClient.py python is nice
   Sent:     python is nice
   Received: PYTHON IS NICE


:class:`SocketServer.UDPServer` Example
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This is the server side::

   import SocketServer

   class MyUDPHandler(SocketServer.BaseRequestHandler):
       """
       This class works similar to the TCP handler class, except that
       self.request consists of a pair of data and client socket, and since
       there is no connection the client address must be given explicitly
       when sending data back via sendto().
       """

       def handle(self):
           data = self.request[0].strip()
           socket = self.request[1]
           print "{} wrote:".format(self.client_address[0])
           print data
           socket.sendto(data.upper(), self.client_address)

   if __name__ == "__main__":
       HOST, PORT = "localhost", 9999
       server = SocketServer.UDPServer((HOST, PORT), MyUDPHandler)
       server.serve_forever()

This is the client side::

   import socket
   import sys

   HOST, PORT = "localhost", 9999
   data = " ".join(sys.argv[1:])

   # SOCK_DGRAM is the socket type to use for UDP sockets
   sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

   # As you can see, there is no connect() call; UDP has no connections.
   # Instead, data is directly sent to the recipient via sendto().
   sock.sendto(data + "\n", (HOST, PORT))
   received = sock.recv(1024)

   print "Sent:     {}".format(data)
   print "Received: {}".format(received)

The output of the example should look exactly like for the TCP server example.


Asynchronous Mixins
~~~~~~~~~~~~~~~~~~~

To build asynchronous handlers, use the :class:`ThreadingMixIn` and
:class:`ForkingMixIn` classes.

An example for the :class:`ThreadingMixIn` class::

   import socket
   import threading
   import SocketServer

   class ThreadedTCPRequestHandler(SocketServer.BaseRequestHandler):

       def handle(self):
           data = self.request.recv(1024)
           cur_thread = threading.current_thread()
           response = "{}: {}".format(cur_thread.name, data)
           self.request.sendall(response)

   class ThreadedTCPServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer):
       pass

   def client(ip, port, message):
       sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
       sock.connect((ip, port))
       try:
           sock.sendall(message)
           response = sock.recv(1024)
           print "Received: {}".format(response)
       finally:
           sock.close()

   if __name__ == "__main__":
       # Port 0 means to select an arbitrary unused port
       HOST, PORT = "localhost", 0

       server = ThreadedTCPServer((HOST, PORT), ThreadedTCPRequestHandler)
       ip, port = server.server_address

       # Start a thread with the server -- that thread will then start one
       # more thread for each request
       server_thread = threading.Thread(target=server.serve_forever)
       # Exit the server thread when the main thread terminates
       server_thread.daemon = True
       server_thread.start()
       print "Server loop running in thread:", server_thread.name

       client(ip, port, "Hello World 1")
       client(ip, port, "Hello World 2")
       client(ip, port, "Hello World 3")

       server.shutdown()


The output of the example should look something like this::

   $ python ThreadedTCPServer.py
   Server loop running in thread: Thread-1
   Received: Thread-2: Hello World 1
   Received: Thread-3: Hello World 2
   Received: Thread-4: Hello World 3


The :class:`ForkingMixIn` class is used in the same way, except that the server
will spawn a new process for each request.

Filemanager

Name Type Size Permission Actions
2to3.txt File 12.37 KB 0644
__builtin__.txt File 1.45 KB 0644
__future__.txt File 4.84 KB 0644
__main__.txt File 535 B 0644
_winreg.txt File 22.76 KB 0644
abc.txt File 6.99 KB 0644
aepack.txt File 4.16 KB 0644
aetools.txt File 3.45 KB 0644
aetypes.txt File 4.16 KB 0644
aifc.txt File 6.91 KB 0644
al.txt File 5.18 KB 0644
allos.txt File 695 B 0644
anydbm.txt File 3.87 KB 0644
archiving.txt File 424 B 0644
argparse.txt File 68.77 KB 0644
array.txt File 10.4 KB 0644
ast.txt File 9.7 KB 0644
asynchat.txt File 8.99 KB 0644
asyncore.txt File 12.37 KB 0644
atexit.txt File 3.81 KB 0644
audioop.txt File 10.15 KB 0644
autogil.txt File 1015 B 0644
base64.txt File 5.93 KB 0644
basehttpserver.txt File 9.98 KB 0644
bastion.txt File 2.55 KB 0644
bdb.txt File 12.14 KB 0644
binascii.txt File 6.04 KB 0644
binhex.txt File 1.87 KB 0644
bisect.txt File 5.29 KB 0644
bsddb.txt File 7.4 KB 0644
bz2.txt File 7.72 KB 0644
calendar.txt File 11.01 KB 0644
carbon.txt File 15.58 KB 0644
cd.txt File 11.69 KB 0644
cgi.txt File 22.12 KB 0644
cgihttpserver.txt File 2.72 KB 0644
cgitb.txt File 2.81 KB 0644
chunk.txt File 4.82 KB 0644
cmath.txt File 7.45 KB 0644
cmd.txt File 8.14 KB 0644
code.txt File 6.93 KB 0644
codecs.txt File 63.19 KB 0644
codeop.txt File 3.69 KB 0644
collections.txt File 40.08 KB 0644
colorpicker.txt File 913 B 0644
colorsys.txt File 1.78 KB 0644
commands.txt File 2.53 KB 0644
compileall.txt File 4.49 KB 0644
compiler.txt File 36.59 KB 0644
configparser.txt File 19 KB 0644
constants.txt File 2.18 KB 0644
contextlib.txt File 5.36 KB 0644
cookie.txt File 9.3 KB 0644
cookielib.txt File 27.09 KB 0644
copy.txt File 3.29 KB 0644
copy_reg.txt File 2.27 KB 0644
crypt.txt File 2.24 KB 0644
crypto.txt File 771 B 0644
csv.txt File 21.07 KB 0644
ctypes.txt File 86.41 KB 0644
curses.ascii.txt File 8.8 KB 0644
curses.panel.txt File 2.68 KB 0644
curses.txt File 70.87 KB 0644
custominterp.txt File 570 B 0644
datatypes.txt File 864 B 0644
datetime.txt File 68.78 KB 0644
dbhash.txt File 3.77 KB 0644
dbm.txt File 2.89 KB 0644
debug.txt File 446 B 0644
decimal.txt File 68.95 KB 0644
development.txt File 640 B 0644
difflib.txt File 29.85 KB 0644
dircache.txt File 1.77 KB 0644
dis.txt File 20.82 KB 0644
distutils.txt File 1.13 KB 0644
dl.txt File 3.31 KB 0644
doctest.txt File 71.42 KB 0644
docxmlrpcserver.txt File 3.66 KB 0644
dumbdbm.txt File 2.62 KB 0644
dummy_thread.txt File 1.03 KB 0644
dummy_threading.txt File 799 B 0644
easydialogs.txt File 10.1 KB 0644
email-examples.txt File 1.24 KB 0644
email.charset.txt File 9.42 KB 0644
email.encoders.txt File 2.32 KB 0644
email.errors.txt File 3.73 KB 0644
email.generator.txt File 5.99 KB 0644
email.header.txt File 7.35 KB 0644
email.iterators.txt File 2.28 KB 0644
email.message.txt File 24.56 KB 0644
email.mime.txt File 9.42 KB 0644
email.parser.txt File 9.71 KB 0644
email.txt File 14.61 KB 0644
email.util.txt File 6.43 KB 0644
errno.txt File 6.55 KB 0644
exceptions.txt File 18.01 KB 0644
fcntl.txt File 6.65 KB 0644
filecmp.txt File 5.22 KB 0644
fileformats.txt File 302 B 0644
fileinput.txt File 7.06 KB 0644
filesys.txt File 806 B 0644
fl.txt File 17.23 KB 0644
fm.txt File 2.64 KB 0644
fnmatch.txt File 3.03 KB 0644
formatter.txt File 12.92 KB 0644
fpectl.txt File 4.07 KB 0644
fpformat.txt File 1.71 KB 0644
fractions.txt File 5.17 KB 0644
framework.txt File 11.18 KB 0644
frameworks.txt File 378 B 0644
ftplib.txt File 14.79 KB 0644
functions.txt File 72.74 KB 0644
functools.txt File 7.15 KB 0644
future_builtins.txt File 1.86 KB 0644
gc.txt File 8.76 KB 0644
gdbm.txt File 4.71 KB 0644
gensuitemodule.txt File 3.04 KB 0644
getopt.txt File 6.51 KB 0644
getpass.txt File 1.9 KB 0644
gettext.txt File 28.35 KB 0644
gl.txt File 5.87 KB 0644
glob.txt File 2.31 KB 0644
grp.txt File 2.2 KB 0644
gzip.txt File 4.62 KB 0644
hashlib.txt File 5.01 KB 0644
heapq.txt File 12.64 KB 0644
hmac.txt File 1.82 KB 0644
hotshot.txt File 4.19 KB 0644
htmllib.txt File 7.03 KB 0644
htmlparser.txt File 11.34 KB 0644
httplib.txt File 35.65 KB 0644
i18n.txt File 409 B 0644
ic.txt File 4.89 KB 0644
idle.txt File 7.88 KB 0644
imageop.txt File 3.91 KB 0644
imaplib.txt File 16.77 KB 0644
imgfile.txt File 2.7 KB 0644
imghdr.txt File 2.57 KB 0644
imp.txt File 12.3 KB 0644
importlib.txt File 1.1 KB 0644
imputil.txt File 6.86 KB 0644
index.txt File 2.23 KB 0644
inspect.txt File 27.21 KB 0644
internet.txt File 950 B 0644
intro.txt File 2.74 KB 0644
io.txt File 36.31 KB 0644
ipc.txt File 631 B 0644
itertools.txt File 34.69 KB 0644
jpeg.txt File 3.77 KB 0644
json.txt File 23.39 KB 0644
keyword.txt File 617 B 0644
language.txt File 523 B 0644
linecache.txt File 1.84 KB 0644
locale.txt File 24.19 KB 0644
logging.config.txt File 29.76 KB 0644
logging.handlers.txt File 26.45 KB 0644
logging.txt File 43.67 KB 0644
mac.txt File 791 B 0644
macos.txt File 3.73 KB 0644
macosa.txt File 3.87 KB 0644
macostools.txt File 3.92 KB 0644
macpath.txt File 650 B 0644
mailbox.txt File 66.51 KB 0644
mailcap.txt File 3.59 KB 0644
markup.txt File 1.22 KB 0644
marshal.txt File 5.47 KB 0644
math.txt File 10.64 KB 0644
md5.txt File 2.75 KB 0644
mhlib.txt File 3.87 KB 0644
mimetools.txt File 4.4 KB 0644
mimetypes.txt File 9.3 KB 0644
mimewriter.txt File 3.2 KB 0644
mimify.txt File 3.44 KB 0644
miniaeframe.txt File 2.5 KB 0644
misc.txt File 248 B 0644
mm.txt File 447 B 0644
mmap.txt File 10.02 KB 0644
modulefinder.txt File 3.3 KB 0644
modules.txt File 382 B 0644
msilib.txt File 18.94 KB 0644
msvcrt.txt File 4.24 KB 0644
multifile.txt File 6.46 KB 0644
multiprocessing.txt File 79.92 KB 0644
mutex.txt File 1.89 KB 0644
netdata.txt File 432 B 0644
netrc.txt File 2.54 KB 0644
new.txt File 2.59 KB 0644
nis.txt File 2.06 KB 0644
nntplib.txt File 14.18 KB 0644
numbers.txt File 7.82 KB 0644
numeric.txt File 751 B 0644
operator.txt File 21.57 KB 0644
optparse.txt File 75.22 KB 0644
os.path.txt File 12.45 KB 0644
os.txt File 79.94 KB 0644
ossaudiodev.txt File 16.9 KB 0644
othergui.txt File 2.73 KB 0644
parser.txt File 15.02 KB 0644
pdb.txt File 15.61 KB 0644
persistence.txt File 826 B 0644
pickle.txt File 36.25 KB 0644
pickletools.txt File 1.95 KB 0644
pipes.txt File 3.7 KB 0644
pkgutil.txt File 7.53 KB 0644
platform.txt File 9.15 KB 0644
plistlib.txt File 4.02 KB 0644
popen2.txt File 6.86 KB 0644
poplib.txt File 6.07 KB 0644
posix.txt File 3.51 KB 0644
posixfile.txt File 7.03 KB 0644
pprint.txt File 8.86 KB 0644
profile.txt File 27.81 KB 0644
pty.txt File 1.72 KB 0644
pwd.txt File 2.66 KB 0644
py_compile.txt File 2.42 KB 0644
pyclbr.txt File 3.22 KB 0644
pydoc.txt File 3.34 KB 0644
pyexpat.txt File 27.83 KB 0644
python.txt File 531 B 0644
queue.txt File 6.8 KB 0644
quopri.txt File 2.61 KB 0644
random.txt File 12.71 KB 0644
re.txt File 51.28 KB 0644
readline.txt File 7.08 KB 0644
repr.txt File 4.57 KB 0644
resource.txt File 9.61 KB 0644
restricted.txt File 3.24 KB 0644
rexec.txt File 11.47 KB 0644
rfc822.txt File 13.71 KB 0644
rlcompleter.txt File 2.44 KB 0644
robotparser.txt File 2.14 KB 0644
runpy.txt File 6.46 KB 0644
sched.txt File 4.49 KB 0644
scrolledtext.txt File 1.32 KB 0644
select.txt File 20.17 KB 0644
sets.txt File 14.54 KB 0644
sgi.txt File 322 B 0644
sgmllib.txt File 10.41 KB 0644
sha.txt File 2.74 KB 0644
shelve.txt File 7.96 KB 0644
shlex.txt File 10.82 KB 0644
shutil.txt File 12.88 KB 0644
signal.txt File 10.33 KB 0644
simplehttpserver.txt File 4.34 KB 0644
simplexmlrpcserver.txt File 9.7 KB 0644
site.txt File 7.4 KB 0644
smtpd.txt File 2.31 KB 0644
smtplib.txt File 14.1 KB 0644
sndhdr.txt File 1.72 KB 0644
socket.txt File 39.7 KB 0644
socketserver.txt File 20.12 KB 0644
someos.txt File 599 B 0644
spwd.txt File 2.76 KB 0644
sqlite3.txt File 34.28 KB 0644
ssl.txt File 27.8 KB 0644
stat.txt File 7.59 KB 0644
statvfs.txt File 1.27 KB 0644
stdtypes.txt File 115.81 KB 0644
string.txt File 42.78 KB 0644
stringio.txt File 4 KB 0644
stringprep.txt File 4.15 KB 0644
strings.txt File 746 B 0644
struct.txt File 16.7 KB 0644
subprocess.txt File 32.68 KB 0644
sun.txt File 249 B 0644
sunau.txt File 6.96 KB 0644
sunaudio.txt File 5.71 KB 0644
symbol.txt File 975 B 0644
symtable.txt File 4.89 KB 0644
sys.txt File 45.76 KB 0644
sysconfig.txt File 7.38 KB 0644
syslog.txt File 3.84 KB 0644
tabnanny.txt File 1.97 KB 0644
tarfile.txt File 26.51 KB 0644
telnetlib.txt File 7.31 KB 0644
tempfile.txt File 10.23 KB 0644
termios.txt File 3.66 KB 0644
test.txt File 17.06 KB 0644
textwrap.txt File 8.35 KB 0644
thread.txt File 6.59 KB 0644
threading.txt File 31.1 KB 0644
time.txt File 24.79 KB 0644
timeit.txt File 11.25 KB 0644
tix.txt File 22.17 KB 0644
tk.txt File 1.57 KB 0644
tkinter.txt File 30.56 KB 0644
token.txt File 2.39 KB 0644
tokenize.txt File 5 KB 0644
trace.txt File 6.57 KB 0644
traceback.txt File 10.45 KB 0644
ttk.txt File 56.02 KB 0644
tty.txt File 1011 B 0644
turtle.txt File 62.57 KB 0644
types.txt File 6.04 KB 0644
undoc.txt File 6.4 KB 0644
unicodedata.txt File 5.59 KB 0644
unittest.txt File 80.78 KB 0644
unix.txt File 490 B 0644
urllib.txt File 22.47 KB 0644
urllib2.txt File 33.13 KB 0644
urlparse.txt File 15.61 KB 0644
user.txt File 2.68 KB 0644
userdict.txt File 8.69 KB 0644
uu.txt File 2.31 KB 0644
uuid.txt File 8.17 KB 0644
warnings.txt File 19.32 KB 0644
wave.txt File 4.93 KB 0644
weakref.txt File 12.66 KB 0644
webbrowser.txt File 8.97 KB 0644
whichdb.txt File 931 B 0644
windows.txt File 273 B 0644
winsound.txt File 4.87 KB 0644
wsgiref.txt File 29.84 KB 0644
xdrlib.txt File 7.89 KB 0644
xml.dom.minidom.txt File 10.91 KB 0644
xml.dom.pulldom.txt File 1.53 KB 0644
xml.dom.txt File 39.2 KB 0644
xml.etree.elementtree.txt File 31.82 KB 0644
xml.sax.handler.txt File 14.93 KB 0644
xml.sax.reader.txt File 11.65 KB 0644
xml.sax.txt File 6.06 KB 0644
xml.sax.utils.txt File 3.4 KB 0644
xml.txt File 5.56 KB 0644
xmlrpclib.txt File 21.4 KB 0644
zipfile.txt File 17.22 KB 0644
zipimport.txt File 5.78 KB 0644
zlib.txt File 10.13 KB 0644