[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@3.12.150.240: ~ $
:mod:`threading` --- Higher-level threading interface
=====================================================

.. module:: threading
   :synopsis: Higher-level threading interface.

**Source code:** :source:`Lib/threading.py`

--------------

This module constructs higher-level threading interfaces on top of the  lower
level :mod:`thread` module.
See also the :mod:`mutex` and :mod:`Queue` modules.

The :mod:`dummy_threading` module is provided for situations where
:mod:`threading` cannot be used because :mod:`thread` is missing.

.. note::

   Starting with Python 2.6, this module provides :pep:`8` compliant aliases and
   properties to replace the ``camelCase`` names that were inspired by Java's
   threading API. This updated API is compatible with that of the
   :mod:`multiprocessing` module. However, no schedule has been set for the
   deprecation of the ``camelCase`` names and they remain fully supported in
   both Python 2.x and 3.x.

.. note::

   Starting with Python 2.5, several Thread methods raise :exc:`RuntimeError`
   instead of :exc:`AssertionError` if called erroneously.

.. impl-detail::

   In CPython, due to the :term:`Global Interpreter Lock`, only one thread
   can execute Python code at once (even though certain performance-oriented
   libraries might overcome this limitation).
   If you want your application to make better use of the computational
   resources of multi-core machines, you are advised to use
   :mod:`multiprocessing`. However, threading is still an appropriate model
   if you want to run multiple I/O-bound tasks simultaneously.


This module defines the following functions and objects:

.. function:: active_count()
              activeCount()

   Return the number of :class:`Thread` objects currently alive.  The returned
   count is equal to the length of the list returned by :func:`.enumerate`.


.. function:: Condition()
   :noindex:

   A factory function that returns a new condition variable object. A condition
   variable allows one or more threads to wait until they are notified by another
   thread.

   See :ref:`condition-objects`.


.. function:: current_thread()
              currentThread()

   Return the current :class:`Thread` object, corresponding to the caller's thread
   of control.  If the caller's thread of control was not created through the
   :mod:`threading` module, a dummy thread object with limited functionality is
   returned.


.. function:: enumerate()

   Return a list of all :class:`Thread` objects currently alive.  The list
   includes daemonic threads, dummy thread objects created by
   :func:`current_thread`, and the main thread.  It excludes terminated threads
   and threads that have not yet been started.


.. function:: Event()
   :noindex:

   A factory function that returns a new event object.  An event manages a flag
   that can be set to true with the :meth:`~Event.set` method and reset to false
   with the :meth:`clear` method.  The :meth:`wait` method blocks until the flag
   is true.

   See :ref:`event-objects`.


.. class:: local

   A class that represents thread-local data.  Thread-local data are data whose
   values are thread specific.  To manage thread-local data, just create an
   instance of :class:`local` (or a subclass) and store attributes on it::

      mydata = threading.local()
      mydata.x = 1

   The instance's values will be different for separate threads.

   For more details and extensive examples, see the documentation string of the
   :mod:`_threading_local` module.

   .. versionadded:: 2.4


.. function:: Lock()

   A factory function that returns a new primitive lock object.  Once a thread has
   acquired it, subsequent attempts to acquire it block, until it is released; any
   thread may release it.

   See :ref:`lock-objects`.


.. function:: RLock()

   A factory function that returns a new reentrant lock object. A reentrant lock
   must be released by the thread that acquired it. Once a thread has acquired a
   reentrant lock, the same thread may acquire it again without blocking; the
   thread must release it once for each time it has acquired it.

   See :ref:`rlock-objects`.


.. function:: Semaphore([value])
   :noindex:

   A factory function that returns a new semaphore object.  A semaphore manages a
   counter representing the number of :meth:`release` calls minus the number of
   :meth:`acquire` calls, plus an initial value. The :meth:`acquire` method blocks
   if necessary until it can return without making the counter negative.  If not
   given, *value* defaults to 1.

   See :ref:`semaphore-objects`.


.. function:: BoundedSemaphore([value])

   A factory function that returns a new bounded semaphore object.  A bounded
   semaphore checks to make sure its current value doesn't exceed its initial
   value.  If it does, :exc:`ValueError` is raised. In most situations semaphores
   are used to guard resources with limited capacity.  If the semaphore is released
   too many times it's a sign of a bug.  If not given, *value* defaults to 1.


.. class:: Thread
   :noindex:

   A class that represents a thread of control.  This class can be safely
   subclassed in a limited fashion.

   See :ref:`thread-objects`.


.. class:: Timer
   :noindex:

   A thread that executes a function after a specified interval has passed.

   See :ref:`timer-objects`.


.. function:: settrace(func)

   .. index:: single: trace function

   Set a trace function for all threads started from the :mod:`threading` module.
   The *func* will be passed to  :func:`sys.settrace` for each thread, before its
   :meth:`run` method is called.

   .. versionadded:: 2.3


.. function:: setprofile(func)

   .. index:: single: profile function

   Set a profile function for all threads started from the :mod:`threading` module.
   The *func* will be passed to  :func:`sys.setprofile` for each thread, before its
   :meth:`run` method is called.

   .. versionadded:: 2.3


.. function:: stack_size([size])

   Return the thread stack size used when creating new threads.  The optional
   *size* argument specifies the stack size to be used for subsequently created
   threads, and must be 0 (use platform or configured default) or a positive
   integer value of at least 32,768 (32kB). If changing the thread stack size is
   unsupported, a :exc:`ThreadError` is raised.  If the specified stack size is
   invalid, a :exc:`ValueError` is raised and the stack size is unmodified.  32kB
   is currently the minimum supported stack size value to guarantee sufficient
   stack space for the interpreter itself.  Note that some platforms may have
   particular restrictions on values for the stack size, such as requiring a
   minimum stack size > 32kB or requiring allocation in multiples of the system
   memory page size - platform documentation should be referred to for more
   information (4kB pages are common; using multiples of 4096 for the stack size is
   the suggested approach in the absence of more specific information).
   Availability: Windows, systems with POSIX threads.

   .. versionadded:: 2.5

Detailed interfaces for the objects are documented below.

The design of this module is loosely based on Java's threading model. However,
where Java makes locks and condition variables basic behavior of every object,
they are separate objects in Python.  Python's :class:`Thread` class supports a
subset of the behavior of Java's Thread class; currently, there are no
priorities, no thread groups, and threads cannot be destroyed, stopped,
suspended, resumed, or interrupted.  The static methods of Java's Thread class,
when implemented, are mapped to module-level functions.

All of the methods described below are executed atomically.


.. _thread-objects:

Thread Objects
--------------

This class represents an activity that is run in a separate thread of control.
There are two ways to specify the activity: by passing a callable object to the
constructor, or by overriding the :meth:`run` method in a subclass.  No other
methods (except for the constructor) should be overridden in a subclass.  In
other words,  *only*  override the :meth:`__init__` and :meth:`run` methods of
this class.

Once a thread object is created, its activity must be started by calling the
thread's :meth:`start` method.  This invokes the :meth:`run` method in a
separate thread of control.

Once the thread's activity is started, the thread is considered 'alive'. It
stops being alive when its :meth:`run` method terminates -- either normally, or
by raising an unhandled exception.  The :meth:`is_alive` method tests whether the
thread is alive.

Other threads can call a thread's :meth:`join` method.  This blocks the calling
thread until the thread whose :meth:`join` method is called is terminated.

A thread has a name.  The name can be passed to the constructor, and read or
changed through the :attr:`name` attribute.

A thread can be flagged as a "daemon thread".  The significance of this flag is
that the entire Python program exits when only daemon threads are left.  The
initial value is inherited from the creating thread.  The flag can be set
through the :attr:`daemon` property.

.. note::
   Daemon threads are abruptly stopped at shutdown.  Their resources (such
   as open files, database transactions, etc.) may not be released properly.
   If you want your threads to stop gracefully, make them non-daemonic and
   use a suitable signalling mechanism such as an :class:`Event`.

There is a "main thread" object; this corresponds to the initial thread of
control in the Python program.  It is not a daemon thread.

There is the possibility that "dummy thread objects" are created. These are
thread objects corresponding to "alien threads", which are threads of control
started outside the threading module, such as directly from C code.  Dummy
thread objects have limited functionality; they are always considered alive and
daemonic, and cannot be :meth:`join`\ ed.  They are never deleted, since it is
impossible to detect the termination of alien threads.


.. class:: Thread(group=None, target=None, name=None, args=(), kwargs={})

   This constructor should always be called with keyword arguments.  Arguments
   are:

   *group* should be ``None``; reserved for future extension when a
   :class:`ThreadGroup` class is implemented.

   *target* is the callable object to be invoked by the :meth:`run` method.
   Defaults to ``None``, meaning nothing is called.

   *name* is the thread name.  By default, a unique name is constructed of the
   form "Thread-*N*" where *N* is a small decimal number.

   *args* is the argument tuple for the target invocation.  Defaults to ``()``.

   *kwargs* is a dictionary of keyword arguments for the target invocation.
   Defaults to ``{}``.

   If the subclass overrides the constructor, it must make sure to invoke the
   base class constructor (``Thread.__init__()``) before doing anything else to
   the thread.

   .. method:: start()

      Start the thread's activity.

      It must be called at most once per thread object.  It arranges for the
      object's :meth:`run` method to be invoked in a separate thread of control.

      This method will raise a :exc:`RuntimeError` if called more than once
      on the same thread object.

   .. method:: run()

      Method representing the thread's activity.

      You may override this method in a subclass.  The standard :meth:`run`
      method invokes the callable object passed to the object's constructor as
      the *target* argument, if any, with sequential and keyword arguments taken
      from the *args* and *kwargs* arguments, respectively.

   .. method:: join([timeout])

      Wait until the thread terminates. This blocks the calling thread until the
      thread whose :meth:`join` method is called terminates -- either normally
      or through an unhandled exception -- or until the optional timeout occurs.

      When the *timeout* argument is present and not ``None``, it should be a
      floating point number specifying a timeout for the operation in seconds
      (or fractions thereof). As :meth:`join` always returns ``None``, you must
      call :meth:`isAlive` after :meth:`join` to decide whether a timeout
      happened -- if the thread is still alive, the :meth:`join` call timed out.

      When the *timeout* argument is not present or ``None``, the operation will
      block until the thread terminates.

      A thread can be :meth:`join`\ ed many times.

      :meth:`join` raises a :exc:`RuntimeError` if an attempt is made to join
      the current thread as that would cause a deadlock. It is also an error to
      :meth:`join` a thread before it has been started and attempts to do so
      raises the same exception.

   .. method:: getName()
               setName()

      Old API for :attr:`~Thread.name`.

   .. attribute:: name

      A string used for identification purposes only. It has no semantics.
      Multiple threads may be given the same name.  The initial name is set by
      the constructor.

   .. attribute:: ident

      The 'thread identifier' of this thread or ``None`` if the thread has not
      been started.  This is a nonzero integer.  See the
      :func:`thread.get_ident()` function.  Thread identifiers may be recycled
      when a thread exits and another thread is created.  The identifier is
      available even after the thread has exited.

      .. versionadded:: 2.6

   .. method:: is_alive()
               isAlive()

      Return whether the thread is alive.

      This method returns ``True`` just before the :meth:`run` method starts
      until just after the :meth:`run` method terminates.  The module function
      :func:`.enumerate` returns a list of all alive threads.

   .. method:: isDaemon()
               setDaemon()

      Old API for :attr:`~Thread.daemon`.

   .. attribute:: daemon

      A boolean value indicating whether this thread is a daemon thread (True)
      or not (False).  This must be set before :meth:`start` is called,
      otherwise :exc:`RuntimeError` is raised.  Its initial value is inherited
      from the creating thread; the main thread is not a daemon thread and
      therefore all threads created in the main thread default to :attr:`daemon`
      = ``False``.

      The entire Python program exits when no alive non-daemon threads are left.


.. _lock-objects:

Lock Objects
------------

A primitive lock is a synchronization primitive that is not owned by a
particular thread when locked.  In Python, it is currently the lowest level
synchronization primitive available, implemented directly by the :mod:`thread`
extension module.

A primitive lock is in one of two states, "locked" or "unlocked". It is created
in the unlocked state.  It has two basic methods, :meth:`acquire` and
:meth:`release`.  When the state is unlocked, :meth:`acquire` changes the state
to locked and returns immediately.  When the state is locked, :meth:`acquire`
blocks until a call to :meth:`release` in another thread changes it to unlocked,
then the :meth:`acquire` call resets it to locked and returns.  The
:meth:`release` method should only be called in the locked state; it changes the
state to unlocked and returns immediately. If an attempt is made to release an
unlocked lock, a :exc:`RuntimeError` will be raised.

When more than one thread is blocked in :meth:`acquire` waiting for the state to
turn to unlocked, only one thread proceeds when a :meth:`release` call resets
the state to unlocked; which one of the waiting threads proceeds is not defined,
and may vary across implementations.

All methods are executed atomically.


.. method:: Lock.acquire([blocking])

   Acquire a lock, blocking or non-blocking.

   When invoked with the *blocking* argument set to ``True`` (the default),
   block until the lock is unlocked, then set it to locked and return ``True``.

   When invoked with the *blocking* argument set to ``False``, do not block.
   If a call with *blocking* set to ``True`` would block, return ``False``
   immediately; otherwise, set the lock to locked and return ``True``.


.. method:: Lock.release()

   Release a lock.

   When the lock is locked, reset it to unlocked, and return.  If any other threads
   are blocked waiting for the lock to become unlocked, allow exactly one of them
   to proceed.

   When invoked on an unlocked lock, a :exc:`ThreadError` is raised.

   There is no return value.


.. _rlock-objects:

RLock Objects
-------------

A reentrant lock is a synchronization primitive that may be acquired multiple
times by the same thread.  Internally, it uses the concepts of "owning thread"
and "recursion level" in addition to the locked/unlocked state used by primitive
locks.  In the locked state, some thread owns the lock; in the unlocked state,
no thread owns it.

To lock the lock, a thread calls its :meth:`acquire` method; this returns once
the thread owns the lock.  To unlock the lock, a thread calls its
:meth:`release` method. :meth:`acquire`/:meth:`release` call pairs may be
nested; only the final :meth:`release` (the :meth:`release` of the outermost
pair) resets the lock to unlocked and allows another thread blocked in
:meth:`acquire` to proceed.


.. method:: RLock.acquire([blocking=1])

   Acquire a lock, blocking or non-blocking.

   When invoked without arguments: if this thread already owns the lock, increment
   the recursion level by one, and return immediately.  Otherwise, if another
   thread owns the lock, block until the lock is unlocked.  Once the lock is
   unlocked (not owned by any thread), then grab ownership, set the recursion level
   to one, and return.  If more than one thread is blocked waiting until the lock
   is unlocked, only one at a time will be able to grab ownership of the lock.
   There is no return value in this case.

   When invoked with the *blocking* argument set to true, do the same thing as when
   called without arguments, and return true.

   When invoked with the *blocking* argument set to false, do not block.  If a call
   without an argument would block, return false immediately; otherwise, do the
   same thing as when called without arguments, and return true.


.. method:: RLock.release()

   Release a lock, decrementing the recursion level.  If after the decrement it is
   zero, reset the lock to unlocked (not owned by any thread), and if any other
   threads are blocked waiting for the lock to become unlocked, allow exactly one
   of them to proceed.  If after the decrement the recursion level is still
   nonzero, the lock remains locked and owned by the calling thread.

   Only call this method when the calling thread owns the lock. A
   :exc:`RuntimeError` is raised if this method is called when the lock is
   unlocked.

   There is no return value.


.. _condition-objects:

Condition Objects
-----------------

A condition variable is always associated with some kind of lock; this can be
passed in or one will be created by default.  (Passing one in is useful when
several condition variables must share the same lock.)

A condition variable has :meth:`acquire` and :meth:`release` methods that call
the corresponding methods of the associated lock. It also has a :meth:`wait`
method, and :meth:`notify` and :meth:`notifyAll` methods.  These three must only
be called when the calling thread has acquired the lock, otherwise a
:exc:`RuntimeError` is raised.

The :meth:`wait` method releases the lock, and then blocks until it is awakened
by a :meth:`notify` or :meth:`notifyAll` call for the same condition variable in
another thread.  Once awakened, it re-acquires the lock and returns.  It is also
possible to specify a timeout.

The :meth:`notify` method wakes up one of the threads waiting for the condition
variable, if any are waiting.  The :meth:`notifyAll` method wakes up all threads
waiting for the condition variable.

Note: the :meth:`notify` and :meth:`notifyAll` methods don't release the lock;
this means that the thread or threads awakened will not return from their
:meth:`wait` call immediately, but only when the thread that called
:meth:`notify` or :meth:`notifyAll` finally relinquishes ownership of the lock.

Tip: the typical programming style using condition variables uses the lock to
synchronize access to some shared state; threads that are interested in a
particular change of state call :meth:`wait` repeatedly until they see the
desired state, while threads that modify the state call :meth:`notify` or
:meth:`notifyAll` when they change the state in such a way that it could
possibly be a desired state for one of the waiters.  For example, the following
code is a generic producer-consumer situation with unlimited buffer capacity::

   # Consume one item
   cv.acquire()
   while not an_item_is_available():
       cv.wait()
   get_an_available_item()
   cv.release()

   # Produce one item
   cv.acquire()
   make_an_item_available()
   cv.notify()
   cv.release()

To choose between :meth:`notify` and :meth:`notifyAll`, consider whether one
state change can be interesting for only one or several waiting threads.  E.g.
in a typical producer-consumer situation, adding one item to the buffer only
needs to wake up one consumer thread.


.. class:: Condition([lock])

   If the *lock* argument is given and not ``None``, it must be a :class:`Lock`
   or :class:`RLock` object, and it is used as the underlying lock.  Otherwise,
   a new :class:`RLock` object is created and used as the underlying lock.

   .. method:: acquire(*args)

      Acquire the underlying lock. This method calls the corresponding method on
      the underlying lock; the return value is whatever that method returns.

   .. method:: release()

      Release the underlying lock. This method calls the corresponding method on
      the underlying lock; there is no return value.

   .. method:: wait([timeout])

      Wait until notified or until a timeout occurs. If the calling thread has not
      acquired the lock when this method is called, a :exc:`RuntimeError` is raised.

      This method releases the underlying lock, and then blocks until it is
      awakened by a :meth:`notify` or :meth:`notifyAll` call for the same
      condition variable in another thread, or until the optional timeout
      occurs.  Once awakened or timed out, it re-acquires the lock and returns.

      When the *timeout* argument is present and not ``None``, it should be a
      floating point number specifying a timeout for the operation in seconds
      (or fractions thereof).

      When the underlying lock is an :class:`RLock`, it is not released using
      its :meth:`release` method, since this may not actually unlock the lock
      when it was acquired multiple times recursively.  Instead, an internal
      interface of the :class:`RLock` class is used, which really unlocks it
      even when it has been recursively acquired several times. Another internal
      interface is then used to restore the recursion level when the lock is
      reacquired.

   .. method:: notify(n=1)

      By default, wake up one thread waiting on this condition, if any.  If the
      calling thread has not acquired the lock when this method is called, a
      :exc:`RuntimeError` is raised.

      This method wakes up at most *n* of the threads waiting for the condition
      variable; it is a no-op if no threads are waiting.

      The current implementation wakes up exactly *n* threads, if at least *n*
      threads are waiting.  However, it's not safe to rely on this behavior.
      A future, optimized implementation may occasionally wake up more than
      *n* threads.

      Note: an awakened thread does not actually return from its :meth:`wait`
      call until it can reacquire the lock.  Since :meth:`notify` does not
      release the lock, its caller should.

   .. method:: notify_all()
               notifyAll()

      Wake up all threads waiting on this condition.  This method acts like
      :meth:`notify`, but wakes up all waiting threads instead of one. If the
      calling thread has not acquired the lock when this method is called, a
      :exc:`RuntimeError` is raised.


.. _semaphore-objects:

Semaphore Objects
-----------------

This is one of the oldest synchronization primitives in the history of computer
science, invented by the early Dutch computer scientist Edsger W. Dijkstra (he
used :meth:`P` and :meth:`V` instead of :meth:`acquire` and :meth:`release`).

A semaphore manages an internal counter which is decremented by each
:meth:`acquire` call and incremented by each :meth:`release` call.  The counter
can never go below zero; when :meth:`acquire` finds that it is zero, it blocks,
waiting until some other thread calls :meth:`release`.


.. class:: Semaphore([value])

   The optional argument gives the initial *value* for the internal counter; it
   defaults to ``1``. If the *value* given is less than 0, :exc:`ValueError` is
   raised.

   .. method:: acquire([blocking])

      Acquire a semaphore.

      When invoked without arguments: if the internal counter is larger than
      zero on entry, decrement it by one and return immediately.  If it is zero
      on entry, block, waiting until some other thread has called
      :meth:`release` to make it larger than zero.  This is done with proper
      interlocking so that if multiple :meth:`acquire` calls are blocked,
      :meth:`release` will wake exactly one of them up.  The implementation may
      pick one at random, so the order in which blocked threads are awakened
      should not be relied on.  There is no return value in this case.

      When invoked with *blocking* set to true, do the same thing as when called
      without arguments, and return true.

      When invoked with *blocking* set to false, do not block.  If a call
      without an argument would block, return false immediately; otherwise, do
      the same thing as when called without arguments, and return true.

   .. method:: release()

      Release a semaphore, incrementing the internal counter by one.  When it
      was zero on entry and another thread is waiting for it to become larger
      than zero again, wake up that thread.


.. _semaphore-examples:

:class:`Semaphore` Example
^^^^^^^^^^^^^^^^^^^^^^^^^^

Semaphores are often used to guard resources with limited capacity, for example,
a database server.  In any situation where the size of the resource is fixed,
you should use a bounded semaphore.  Before spawning any worker threads, your
main thread would initialize the semaphore::

   maxconnections = 5
   ...
   pool_sema = BoundedSemaphore(value=maxconnections)

Once spawned, worker threads call the semaphore's acquire and release methods
when they need to connect to the server::

   pool_sema.acquire()
   conn = connectdb()
   ... use connection ...
   conn.close()
   pool_sema.release()

The use of a bounded semaphore reduces the chance that a programming error which
causes the semaphore to be released more than it's acquired will go undetected.


.. _event-objects:

Event Objects
-------------

This is one of the simplest mechanisms for communication between threads: one
thread signals an event and other threads wait for it.

An event object manages an internal flag that can be set to true with the
:meth:`~Event.set` method and reset to false with the :meth:`clear` method.  The
:meth:`wait` method blocks until the flag is true.


.. class:: Event()

   The internal flag is initially false.

   .. method:: is_set()
               isSet()

      Return true if and only if the internal flag is true.

      .. versionchanged:: 2.6
         The ``is_set()`` syntax is new.

   .. method:: set()

      Set the internal flag to true. All threads waiting for it to become true
      are awakened. Threads that call :meth:`wait` once the flag is true will
      not block at all.

   .. method:: clear()

      Reset the internal flag to false. Subsequently, threads calling
      :meth:`wait` will block until :meth:`.set` is called to set the internal
      flag to true again.

   .. method:: wait([timeout])

      Block until the internal flag is true.  If the internal flag is true on
      entry, return immediately.  Otherwise, block until another thread calls
      :meth:`.set` to set the flag to true, or until the optional timeout
      occurs.

      When the timeout argument is present and not ``None``, it should be a
      floating point number specifying a timeout for the operation in seconds
      (or fractions thereof).

      This method returns the internal flag on exit, so it will always return
      ``True`` except if a timeout is given and the operation times out.

      .. versionchanged:: 2.7
         Previously, the method always returned ``None``.


.. _timer-objects:

Timer Objects
-------------

This class represents an action that should be run only after a certain amount
of time has passed --- a timer.  :class:`Timer` is a subclass of :class:`Thread`
and as such also functions as an example of creating custom threads.

Timers are started, as with threads, by calling their :meth:`start` method.  The
timer can be stopped (before its action has begun) by calling the :meth:`cancel`
method.  The interval the timer will wait before executing its action may not be
exactly the same as the interval specified by the user.

For example::

   def hello():
       print "hello, world"

   t = Timer(30.0, hello)
   t.start() # after 30 seconds, "hello, world" will be printed


.. class:: Timer(interval, function, args=[], kwargs={})

   Create a timer that will run *function* with arguments *args* and  keyword
   arguments *kwargs*, after *interval* seconds have passed.

   .. method:: cancel()

      Stop the timer, and cancel the execution of the timer's action.  This will
      only work if the timer is still in its waiting stage.


.. _with-locks:

Using locks, conditions, and semaphores in the :keyword:`with` statement
------------------------------------------------------------------------

All of the objects provided by this module that have :meth:`acquire` and
:meth:`release` methods can be used as context managers for a :keyword:`with`
statement.  The :meth:`acquire` method will be called when the block is entered,
and :meth:`release` will be called when the block is exited.

Currently, :class:`Lock`, :class:`RLock`, :class:`Condition`,
:class:`Semaphore`, and :class:`BoundedSemaphore` objects may be used as
:keyword:`with` statement context managers.  For example::

   import threading

   some_rlock = threading.RLock()

   with some_rlock:
       print "some_rlock is locked while this executes"


.. _threaded-imports:

Importing in threaded code
--------------------------

While the import machinery is thread-safe, there are two key restrictions on
threaded imports due to inherent limitations in the way that thread-safety is
provided:

* Firstly, other than in the main module, an import should not have the
  side effect of spawning a new thread and then waiting for that thread in
  any way. Failing to abide by this restriction can lead to a deadlock if
  the spawned thread directly or indirectly attempts to import a module.
* Secondly, all import attempts must be completed before the interpreter
  starts shutting itself down. This can be most easily achieved by only
  performing imports from non-daemon threads created through the threading
  module. Daemon threads and threads created directly with the thread
  module will require some other form of synchronization to ensure they do
  not attempt imports after system shutdown has commenced. Failure to
  abide by this restriction will lead to intermittent exceptions and
  crashes during interpreter shutdown (as the late imports attempt to
  access machinery which is no longer in a valid state).

Filemanager

Name Type Size Permission Actions
2to3.txt File 12.37 KB 0644
__builtin__.txt File 1.45 KB 0644
__future__.txt File 4.84 KB 0644
__main__.txt File 535 B 0644
_winreg.txt File 22.76 KB 0644
abc.txt File 6.99 KB 0644
aepack.txt File 4.16 KB 0644
aetools.txt File 3.45 KB 0644
aetypes.txt File 4.16 KB 0644
aifc.txt File 6.91 KB 0644
al.txt File 5.18 KB 0644
allos.txt File 695 B 0644
anydbm.txt File 3.87 KB 0644
archiving.txt File 424 B 0644
argparse.txt File 68.77 KB 0644
array.txt File 10.4 KB 0644
ast.txt File 9.7 KB 0644
asynchat.txt File 8.99 KB 0644
asyncore.txt File 12.37 KB 0644
atexit.txt File 3.81 KB 0644
audioop.txt File 10.15 KB 0644
autogil.txt File 1015 B 0644
base64.txt File 5.93 KB 0644
basehttpserver.txt File 9.98 KB 0644
bastion.txt File 2.55 KB 0644
bdb.txt File 12.14 KB 0644
binascii.txt File 6.04 KB 0644
binhex.txt File 1.87 KB 0644
bisect.txt File 5.29 KB 0644
bsddb.txt File 7.4 KB 0644
bz2.txt File 7.72 KB 0644
calendar.txt File 11.01 KB 0644
carbon.txt File 15.58 KB 0644
cd.txt File 11.69 KB 0644
cgi.txt File 22.12 KB 0644
cgihttpserver.txt File 2.72 KB 0644
cgitb.txt File 2.81 KB 0644
chunk.txt File 4.82 KB 0644
cmath.txt File 7.45 KB 0644
cmd.txt File 8.14 KB 0644
code.txt File 6.93 KB 0644
codecs.txt File 63.19 KB 0644
codeop.txt File 3.69 KB 0644
collections.txt File 40.08 KB 0644
colorpicker.txt File 913 B 0644
colorsys.txt File 1.78 KB 0644
commands.txt File 2.53 KB 0644
compileall.txt File 4.49 KB 0644
compiler.txt File 36.59 KB 0644
configparser.txt File 19 KB 0644
constants.txt File 2.18 KB 0644
contextlib.txt File 5.36 KB 0644
cookie.txt File 9.3 KB 0644
cookielib.txt File 27.09 KB 0644
copy.txt File 3.29 KB 0644
copy_reg.txt File 2.27 KB 0644
crypt.txt File 2.24 KB 0644
crypto.txt File 771 B 0644
csv.txt File 21.07 KB 0644
ctypes.txt File 86.41 KB 0644
curses.ascii.txt File 8.8 KB 0644
curses.panel.txt File 2.68 KB 0644
curses.txt File 70.87 KB 0644
custominterp.txt File 570 B 0644
datatypes.txt File 864 B 0644
datetime.txt File 68.78 KB 0644
dbhash.txt File 3.77 KB 0644
dbm.txt File 2.89 KB 0644
debug.txt File 446 B 0644
decimal.txt File 68.95 KB 0644
development.txt File 640 B 0644
difflib.txt File 29.85 KB 0644
dircache.txt File 1.77 KB 0644
dis.txt File 20.82 KB 0644
distutils.txt File 1.13 KB 0644
dl.txt File 3.31 KB 0644
doctest.txt File 71.42 KB 0644
docxmlrpcserver.txt File 3.66 KB 0644
dumbdbm.txt File 2.62 KB 0644
dummy_thread.txt File 1.03 KB 0644
dummy_threading.txt File 799 B 0644
easydialogs.txt File 10.1 KB 0644
email-examples.txt File 1.24 KB 0644
email.charset.txt File 9.42 KB 0644
email.encoders.txt File 2.32 KB 0644
email.errors.txt File 3.73 KB 0644
email.generator.txt File 5.99 KB 0644
email.header.txt File 7.35 KB 0644
email.iterators.txt File 2.28 KB 0644
email.message.txt File 24.56 KB 0644
email.mime.txt File 9.42 KB 0644
email.parser.txt File 9.71 KB 0644
email.txt File 14.61 KB 0644
email.util.txt File 6.43 KB 0644
errno.txt File 6.55 KB 0644
exceptions.txt File 18.01 KB 0644
fcntl.txt File 6.65 KB 0644
filecmp.txt File 5.22 KB 0644
fileformats.txt File 302 B 0644
fileinput.txt File 7.06 KB 0644
filesys.txt File 806 B 0644
fl.txt File 17.23 KB 0644
fm.txt File 2.64 KB 0644
fnmatch.txt File 3.03 KB 0644
formatter.txt File 12.92 KB 0644
fpectl.txt File 4.07 KB 0644
fpformat.txt File 1.71 KB 0644
fractions.txt File 5.17 KB 0644
framework.txt File 11.18 KB 0644
frameworks.txt File 378 B 0644
ftplib.txt File 14.79 KB 0644
functions.txt File 72.74 KB 0644
functools.txt File 7.15 KB 0644
future_builtins.txt File 1.86 KB 0644
gc.txt File 8.76 KB 0644
gdbm.txt File 4.71 KB 0644
gensuitemodule.txt File 3.04 KB 0644
getopt.txt File 6.51 KB 0644
getpass.txt File 1.9 KB 0644
gettext.txt File 28.35 KB 0644
gl.txt File 5.87 KB 0644
glob.txt File 2.31 KB 0644
grp.txt File 2.2 KB 0644
gzip.txt File 4.62 KB 0644
hashlib.txt File 5.01 KB 0644
heapq.txt File 12.64 KB 0644
hmac.txt File 1.82 KB 0644
hotshot.txt File 4.19 KB 0644
htmllib.txt File 7.03 KB 0644
htmlparser.txt File 11.34 KB 0644
httplib.txt File 35.65 KB 0644
i18n.txt File 409 B 0644
ic.txt File 4.89 KB 0644
idle.txt File 7.88 KB 0644
imageop.txt File 3.91 KB 0644
imaplib.txt File 16.77 KB 0644
imgfile.txt File 2.7 KB 0644
imghdr.txt File 2.57 KB 0644
imp.txt File 12.3 KB 0644
importlib.txt File 1.1 KB 0644
imputil.txt File 6.86 KB 0644
index.txt File 2.23 KB 0644
inspect.txt File 27.21 KB 0644
internet.txt File 950 B 0644
intro.txt File 2.74 KB 0644
io.txt File 36.31 KB 0644
ipc.txt File 631 B 0644
itertools.txt File 34.69 KB 0644
jpeg.txt File 3.77 KB 0644
json.txt File 23.39 KB 0644
keyword.txt File 617 B 0644
language.txt File 523 B 0644
linecache.txt File 1.84 KB 0644
locale.txt File 24.19 KB 0644
logging.config.txt File 29.76 KB 0644
logging.handlers.txt File 26.45 KB 0644
logging.txt File 43.67 KB 0644
mac.txt File 791 B 0644
macos.txt File 3.73 KB 0644
macosa.txt File 3.87 KB 0644
macostools.txt File 3.92 KB 0644
macpath.txt File 650 B 0644
mailbox.txt File 66.51 KB 0644
mailcap.txt File 3.59 KB 0644
markup.txt File 1.22 KB 0644
marshal.txt File 5.47 KB 0644
math.txt File 10.64 KB 0644
md5.txt File 2.75 KB 0644
mhlib.txt File 3.87 KB 0644
mimetools.txt File 4.4 KB 0644
mimetypes.txt File 9.3 KB 0644
mimewriter.txt File 3.2 KB 0644
mimify.txt File 3.44 KB 0644
miniaeframe.txt File 2.5 KB 0644
misc.txt File 248 B 0644
mm.txt File 447 B 0644
mmap.txt File 10.02 KB 0644
modulefinder.txt File 3.3 KB 0644
modules.txt File 382 B 0644
msilib.txt File 18.94 KB 0644
msvcrt.txt File 4.24 KB 0644
multifile.txt File 6.46 KB 0644
multiprocessing.txt File 79.92 KB 0644
mutex.txt File 1.89 KB 0644
netdata.txt File 432 B 0644
netrc.txt File 2.54 KB 0644
new.txt File 2.59 KB 0644
nis.txt File 2.06 KB 0644
nntplib.txt File 14.18 KB 0644
numbers.txt File 7.82 KB 0644
numeric.txt File 751 B 0644
operator.txt File 21.57 KB 0644
optparse.txt File 75.22 KB 0644
os.path.txt File 12.45 KB 0644
os.txt File 79.94 KB 0644
ossaudiodev.txt File 16.9 KB 0644
othergui.txt File 2.73 KB 0644
parser.txt File 15.02 KB 0644
pdb.txt File 15.61 KB 0644
persistence.txt File 826 B 0644
pickle.txt File 36.25 KB 0644
pickletools.txt File 1.95 KB 0644
pipes.txt File 3.7 KB 0644
pkgutil.txt File 7.53 KB 0644
platform.txt File 9.15 KB 0644
plistlib.txt File 4.02 KB 0644
popen2.txt File 6.86 KB 0644
poplib.txt File 6.07 KB 0644
posix.txt File 3.51 KB 0644
posixfile.txt File 7.03 KB 0644
pprint.txt File 8.86 KB 0644
profile.txt File 27.81 KB 0644
pty.txt File 1.72 KB 0644
pwd.txt File 2.66 KB 0644
py_compile.txt File 2.42 KB 0644
pyclbr.txt File 3.22 KB 0644
pydoc.txt File 3.34 KB 0644
pyexpat.txt File 27.83 KB 0644
python.txt File 531 B 0644
queue.txt File 6.8 KB 0644
quopri.txt File 2.61 KB 0644
random.txt File 12.71 KB 0644
re.txt File 51.28 KB 0644
readline.txt File 7.08 KB 0644
repr.txt File 4.57 KB 0644
resource.txt File 9.61 KB 0644
restricted.txt File 3.24 KB 0644
rexec.txt File 11.47 KB 0644
rfc822.txt File 13.71 KB 0644
rlcompleter.txt File 2.44 KB 0644
robotparser.txt File 2.14 KB 0644
runpy.txt File 6.46 KB 0644
sched.txt File 4.49 KB 0644
scrolledtext.txt File 1.32 KB 0644
select.txt File 20.17 KB 0644
sets.txt File 14.54 KB 0644
sgi.txt File 322 B 0644
sgmllib.txt File 10.41 KB 0644
sha.txt File 2.74 KB 0644
shelve.txt File 7.96 KB 0644
shlex.txt File 10.82 KB 0644
shutil.txt File 12.88 KB 0644
signal.txt File 10.33 KB 0644
simplehttpserver.txt File 4.34 KB 0644
simplexmlrpcserver.txt File 9.7 KB 0644
site.txt File 7.4 KB 0644
smtpd.txt File 2.31 KB 0644
smtplib.txt File 14.1 KB 0644
sndhdr.txt File 1.72 KB 0644
socket.txt File 39.7 KB 0644
socketserver.txt File 20.12 KB 0644
someos.txt File 599 B 0644
spwd.txt File 2.76 KB 0644
sqlite3.txt File 34.28 KB 0644
ssl.txt File 27.8 KB 0644
stat.txt File 7.59 KB 0644
statvfs.txt File 1.27 KB 0644
stdtypes.txt File 115.81 KB 0644
string.txt File 42.78 KB 0644
stringio.txt File 4 KB 0644
stringprep.txt File 4.15 KB 0644
strings.txt File 746 B 0644
struct.txt File 16.7 KB 0644
subprocess.txt File 32.68 KB 0644
sun.txt File 249 B 0644
sunau.txt File 6.96 KB 0644
sunaudio.txt File 5.71 KB 0644
symbol.txt File 975 B 0644
symtable.txt File 4.89 KB 0644
sys.txt File 45.76 KB 0644
sysconfig.txt File 7.38 KB 0644
syslog.txt File 3.84 KB 0644
tabnanny.txt File 1.97 KB 0644
tarfile.txt File 26.51 KB 0644
telnetlib.txt File 7.31 KB 0644
tempfile.txt File 10.23 KB 0644
termios.txt File 3.66 KB 0644
test.txt File 17.06 KB 0644
textwrap.txt File 8.35 KB 0644
thread.txt File 6.59 KB 0644
threading.txt File 31.1 KB 0644
time.txt File 24.79 KB 0644
timeit.txt File 11.25 KB 0644
tix.txt File 22.17 KB 0644
tk.txt File 1.57 KB 0644
tkinter.txt File 30.56 KB 0644
token.txt File 2.39 KB 0644
tokenize.txt File 5 KB 0644
trace.txt File 6.57 KB 0644
traceback.txt File 10.45 KB 0644
ttk.txt File 56.02 KB 0644
tty.txt File 1011 B 0644
turtle.txt File 62.57 KB 0644
types.txt File 6.04 KB 0644
undoc.txt File 6.4 KB 0644
unicodedata.txt File 5.59 KB 0644
unittest.txt File 80.78 KB 0644
unix.txt File 490 B 0644
urllib.txt File 22.47 KB 0644
urllib2.txt File 33.13 KB 0644
urlparse.txt File 15.61 KB 0644
user.txt File 2.68 KB 0644
userdict.txt File 8.69 KB 0644
uu.txt File 2.31 KB 0644
uuid.txt File 8.17 KB 0644
warnings.txt File 19.32 KB 0644
wave.txt File 4.93 KB 0644
weakref.txt File 12.66 KB 0644
webbrowser.txt File 8.97 KB 0644
whichdb.txt File 931 B 0644
windows.txt File 273 B 0644
winsound.txt File 4.87 KB 0644
wsgiref.txt File 29.84 KB 0644
xdrlib.txt File 7.89 KB 0644
xml.dom.minidom.txt File 10.91 KB 0644
xml.dom.pulldom.txt File 1.53 KB 0644
xml.dom.txt File 39.2 KB 0644
xml.etree.elementtree.txt File 31.82 KB 0644
xml.sax.handler.txt File 14.93 KB 0644
xml.sax.reader.txt File 11.65 KB 0644
xml.sax.txt File 6.06 KB 0644
xml.sax.utils.txt File 3.4 KB 0644
xml.txt File 5.56 KB 0644
xmlrpclib.txt File 21.4 KB 0644
zipfile.txt File 17.22 KB 0644
zipimport.txt File 5.78 KB 0644
zlib.txt File 10.13 KB 0644