[ Avaa Bypassed ]




Upload:

Command:

hmhc3928@3.145.81.39: ~ $

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>8.4. heapq — Heap queue algorithm &mdash; Python 2.7.5 documentation</title>
    
    <link rel="stylesheet" href="../_static/default.css" type="text/css" />
    <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '../',
        VERSION:     '2.7.5',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="../_static/jquery.js"></script>
    <script type="text/javascript" src="../_static/underscore.js"></script>
    <script type="text/javascript" src="../_static/doctools.js"></script>
    <script type="text/javascript" src="../_static/sidebar.js"></script>
    <link rel="search" type="application/opensearchdescription+xml"
          title="Search within Python 2.7.5 documentation"
          href="../_static/opensearch.xml"/>
    <link rel="author" title="About these documents" href="../about.html" />
    <link rel="copyright" title="Copyright" href="../copyright.html" />
    <link rel="top" title="Python 2.7.5 documentation" href="../index.html" />
    <link rel="up" title="8. Data Types" href="datatypes.html" />
    <link rel="next" title="8.5. bisect — Array bisection algorithm" href="bisect.html" />
    <link rel="prev" title="8.3. collections — High-performance container datatypes" href="collections.html" />
    <link rel="shortcut icon" type="image/png" href="../_static/py.png" />
    <script type="text/javascript" src="../_static/copybutton.js"></script>
    
 

  </head>
  <body>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li class="right" >
          <a href="bisect.html" title="8.5. bisect — Array bisection algorithm"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="collections.html" title="8.3. collections — High-performance container datatypes"
             accesskey="P">previous</a> |</li>
        <li><img src="../_static/py.png" alt=""
                 style="vertical-align: middle; margin-top: -1px"/></li>
        <li><a href="http://www.python.org/">Python</a> &raquo;</li>
        <li>
          <a href="../index.html">Python 2.7.5 documentation</a> &raquo;
        </li>

          <li><a href="index.html" >The Python Standard Library</a> &raquo;</li>
          <li><a href="datatypes.html" accesskey="U">8. Data Types</a> &raquo;</li> 
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <div class="section" id="module-heapq">
<span id="heapq-heap-queue-algorithm"></span><h1>8.4. <a class="reference internal" href="#module-heapq" title="heapq: Heap queue algorithm (a.k.a. priority queue)."><tt class="xref py py-mod docutils literal"><span class="pre">heapq</span></tt></a> &#8212; Heap queue algorithm<a class="headerlink" href="#module-heapq" title="Permalink to this headline">¶</a></h1>
<p class="versionadded">
<span class="versionmodified">New in version 2.3.</span></p>
<p><strong>Source code:</strong> <a class="reference external" href="http://hg.python.org/cpython/file/2.7/Lib/heapq.py">Lib/heapq.py</a></p>
<hr class="docutils" />
<p>This module provides an implementation of the heap queue algorithm, also known
as the priority queue algorithm.</p>
<p>Heaps are binary trees for which every parent node has a value less than or
equal to any of its children.  This implementation uses arrays for which
<tt class="docutils literal"><span class="pre">heap[k]</span> <span class="pre">&lt;=</span> <span class="pre">heap[2*k+1]</span></tt> and <tt class="docutils literal"><span class="pre">heap[k]</span> <span class="pre">&lt;=</span> <span class="pre">heap[2*k+2]</span></tt> for all <em>k</em>, counting
elements from zero.  For the sake of comparison, non-existing elements are
considered to be infinite.  The interesting property of a heap is that its
smallest element is always the root, <tt class="docutils literal"><span class="pre">heap[0]</span></tt>.</p>
<p>The API below differs from textbook heap algorithms in two aspects: (a) We use
zero-based indexing.  This makes the relationship between the index for a node
and the indexes for its children slightly less obvious, but is more suitable
since Python uses zero-based indexing. (b) Our pop method returns the smallest
item, not the largest (called a &#8220;min heap&#8221; in textbooks; a &#8220;max heap&#8221; is more
common in texts because of its suitability for in-place sorting).</p>
<p>These two make it possible to view the heap as a regular Python list without
surprises: <tt class="docutils literal"><span class="pre">heap[0]</span></tt> is the smallest item, and <tt class="docutils literal"><span class="pre">heap.sort()</span></tt> maintains the
heap invariant!</p>
<p>To create a heap, use a list initialized to <tt class="docutils literal"><span class="pre">[]</span></tt>, or you can transform a
populated list into a heap via function <a class="reference internal" href="#heapq.heapify" title="heapq.heapify"><tt class="xref py py-func docutils literal"><span class="pre">heapify()</span></tt></a>.</p>
<p>The following functions are provided:</p>
<dl class="function">
<dt id="heapq.heappush">
<tt class="descclassname">heapq.</tt><tt class="descname">heappush</tt><big>(</big><em>heap</em>, <em>item</em><big>)</big><a class="headerlink" href="#heapq.heappush" title="Permalink to this definition">¶</a></dt>
<dd><p>Push the value <em>item</em> onto the <em>heap</em>, maintaining the heap invariant.</p>
</dd></dl>

<dl class="function">
<dt id="heapq.heappop">
<tt class="descclassname">heapq.</tt><tt class="descname">heappop</tt><big>(</big><em>heap</em><big>)</big><a class="headerlink" href="#heapq.heappop" title="Permalink to this definition">¶</a></dt>
<dd><p>Pop and return the smallest item from the <em>heap</em>, maintaining the heap
invariant.  If the heap is empty, <a class="reference internal" href="exceptions.html#exceptions.IndexError" title="exceptions.IndexError"><tt class="xref py py-exc docutils literal"><span class="pre">IndexError</span></tt></a> is raised.</p>
</dd></dl>

<dl class="function">
<dt id="heapq.heappushpop">
<tt class="descclassname">heapq.</tt><tt class="descname">heappushpop</tt><big>(</big><em>heap</em>, <em>item</em><big>)</big><a class="headerlink" href="#heapq.heappushpop" title="Permalink to this definition">¶</a></dt>
<dd><p>Push <em>item</em> on the heap, then pop and return the smallest item from the
<em>heap</em>.  The combined action runs more efficiently than <a class="reference internal" href="#heapq.heappush" title="heapq.heappush"><tt class="xref py py-func docutils literal"><span class="pre">heappush()</span></tt></a>
followed by a separate call to <a class="reference internal" href="#heapq.heappop" title="heapq.heappop"><tt class="xref py py-func docutils literal"><span class="pre">heappop()</span></tt></a>.</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.6.</span></p>
</dd></dl>

<dl class="function">
<dt id="heapq.heapify">
<tt class="descclassname">heapq.</tt><tt class="descname">heapify</tt><big>(</big><em>x</em><big>)</big><a class="headerlink" href="#heapq.heapify" title="Permalink to this definition">¶</a></dt>
<dd><p>Transform list <em>x</em> into a heap, in-place, in linear time.</p>
</dd></dl>

<dl class="function">
<dt id="heapq.heapreplace">
<tt class="descclassname">heapq.</tt><tt class="descname">heapreplace</tt><big>(</big><em>heap</em>, <em>item</em><big>)</big><a class="headerlink" href="#heapq.heapreplace" title="Permalink to this definition">¶</a></dt>
<dd><p>Pop and return the smallest item from the <em>heap</em>, and also push the new <em>item</em>.
The heap size doesn&#8217;t change. If the heap is empty, <a class="reference internal" href="exceptions.html#exceptions.IndexError" title="exceptions.IndexError"><tt class="xref py py-exc docutils literal"><span class="pre">IndexError</span></tt></a> is raised.</p>
<p>This one step operation is more efficient than a <a class="reference internal" href="#heapq.heappop" title="heapq.heappop"><tt class="xref py py-func docutils literal"><span class="pre">heappop()</span></tt></a> followed by
<a class="reference internal" href="#heapq.heappush" title="heapq.heappush"><tt class="xref py py-func docutils literal"><span class="pre">heappush()</span></tt></a> and can be more appropriate when using a fixed-size heap.
The pop/push combination always returns an element from the heap and replaces
it with <em>item</em>.</p>
<p>The value returned may be larger than the <em>item</em> added.  If that isn&#8217;t
desired, consider using <a class="reference internal" href="#heapq.heappushpop" title="heapq.heappushpop"><tt class="xref py py-func docutils literal"><span class="pre">heappushpop()</span></tt></a> instead.  Its push/pop
combination returns the smaller of the two values, leaving the larger value
on the heap.</p>
</dd></dl>

<p>The module also offers three general purpose functions based on heaps.</p>
<dl class="function">
<dt id="heapq.merge">
<tt class="descclassname">heapq.</tt><tt class="descname">merge</tt><big>(</big><em>*iterables</em><big>)</big><a class="headerlink" href="#heapq.merge" title="Permalink to this definition">¶</a></dt>
<dd><p>Merge multiple sorted inputs into a single sorted output (for example, merge
timestamped entries from multiple log files).  Returns an <a class="reference internal" href="../glossary.html#term-iterator"><em class="xref std std-term">iterator</em></a>
over the sorted values.</p>
<p>Similar to <tt class="docutils literal"><span class="pre">sorted(itertools.chain(*iterables))</span></tt> but returns an iterable, does
not pull the data into memory all at once, and assumes that each of the input
streams is already sorted (smallest to largest).</p>
<p class="versionadded">
<span class="versionmodified">New in version 2.6.</span></p>
</dd></dl>

<dl class="function">
<dt id="heapq.nlargest">
<tt class="descclassname">heapq.</tt><tt class="descname">nlargest</tt><big>(</big><em>n</em>, <em>iterable</em><span class="optional">[</span>, <em>key</em><span class="optional">]</span><big>)</big><a class="headerlink" href="#heapq.nlargest" title="Permalink to this definition">¶</a></dt>
<dd><p>Return a list with the <em>n</em> largest elements from the dataset defined by
<em>iterable</em>.  <em>key</em>, if provided, specifies a function of one argument that is
used to extract a comparison key from each element in the iterable:
<tt class="docutils literal"><span class="pre">key=str.lower</span></tt> Equivalent to:  <tt class="docutils literal"><span class="pre">sorted(iterable,</span> <span class="pre">key=key,</span>
<span class="pre">reverse=True)[:n]</span></tt></p>
<p class="versionadded">
<span class="versionmodified">New in version 2.4.</span></p>
<p class="versionchanged">
<span class="versionmodified">Changed in version 2.5: </span>Added the optional <em>key</em> argument.</p>
</dd></dl>

<dl class="function">
<dt id="heapq.nsmallest">
<tt class="descclassname">heapq.</tt><tt class="descname">nsmallest</tt><big>(</big><em>n</em>, <em>iterable</em><span class="optional">[</span>, <em>key</em><span class="optional">]</span><big>)</big><a class="headerlink" href="#heapq.nsmallest" title="Permalink to this definition">¶</a></dt>
<dd><p>Return a list with the <em>n</em> smallest elements from the dataset defined by
<em>iterable</em>.  <em>key</em>, if provided, specifies a function of one argument that is
used to extract a comparison key from each element in the iterable:
<tt class="docutils literal"><span class="pre">key=str.lower</span></tt> Equivalent to:  <tt class="docutils literal"><span class="pre">sorted(iterable,</span> <span class="pre">key=key)[:n]</span></tt></p>
<p class="versionadded">
<span class="versionmodified">New in version 2.4.</span></p>
<p class="versionchanged">
<span class="versionmodified">Changed in version 2.5: </span>Added the optional <em>key</em> argument.</p>
</dd></dl>

<p>The latter two functions perform best for smaller values of <em>n</em>.  For larger
values, it is more efficient to use the <a class="reference internal" href="functions.html#sorted" title="sorted"><tt class="xref py py-func docutils literal"><span class="pre">sorted()</span></tt></a> function.  Also, when
<tt class="docutils literal"><span class="pre">n==1</span></tt>, it is more efficient to use the built-in <a class="reference internal" href="functions.html#min" title="min"><tt class="xref py py-func docutils literal"><span class="pre">min()</span></tt></a> and <a class="reference internal" href="functions.html#max" title="max"><tt class="xref py py-func docutils literal"><span class="pre">max()</span></tt></a>
functions.</p>
<div class="section" id="basic-examples">
<h2>8.4.1. Basic Examples<a class="headerlink" href="#basic-examples" title="Permalink to this headline">¶</a></h2>
<p>A <a class="reference external" href="http://en.wikipedia.org/wiki/Heapsort">heapsort</a> can be implemented by
pushing all values onto a heap and then popping off the smallest values one at a
time:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="k">def</span> <span class="nf">heapsort</span><span class="p">(</span><span class="n">iterable</span><span class="p">):</span>
<span class="gp">... </span>    <span class="s">&#39;Equivalent to sorted(iterable)&#39;</span>
<span class="gp">... </span>    <span class="n">h</span> <span class="o">=</span> <span class="p">[]</span>
<span class="gp">... </span>    <span class="k">for</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">iterable</span><span class="p">:</span>
<span class="gp">... </span>        <span class="n">heappush</span><span class="p">(</span><span class="n">h</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span>
<span class="gp">... </span>    <span class="k">return</span> <span class="p">[</span><span class="n">heappop</span><span class="p">(</span><span class="n">h</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">h</span><span class="p">))]</span>
<span class="gp">...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">heapsort</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">9</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
<span class="go">[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]</span>
</pre></div>
</div>
<p>Heap elements can be tuples.  This is useful for assigning comparison values
(such as task priorities) alongside the main record being tracked:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">h</span> <span class="o">=</span> <span class="p">[]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">heappush</span><span class="p">(</span><span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="s">&#39;write code&#39;</span><span class="p">))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">heappush</span><span class="p">(</span><span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="mi">7</span><span class="p">,</span> <span class="s">&#39;release product&#39;</span><span class="p">))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">heappush</span><span class="p">(</span><span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="s">&#39;write spec&#39;</span><span class="p">))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">heappush</span><span class="p">(</span><span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="s">&#39;create tests&#39;</span><span class="p">))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">heappop</span><span class="p">(</span><span class="n">h</span><span class="p">)</span>
<span class="go">(1, &#39;write spec&#39;)</span>
</pre></div>
</div>
</div>
<div class="section" id="priority-queue-implementation-notes">
<h2>8.4.2. Priority Queue Implementation Notes<a class="headerlink" href="#priority-queue-implementation-notes" title="Permalink to this headline">¶</a></h2>
<p>A <a class="reference external" href="http://en.wikipedia.org/wiki/Priority_queue">priority queue</a> is common use
for a heap, and it presents several implementation challenges:</p>
<ul class="simple">
<li>Sort stability:  how do you get two tasks with equal priorities to be returned
in the order they were originally added?</li>
<li>In the future with Python 3, tuple comparison breaks for (priority, task)
pairs if the priorities are equal and the tasks do not have a default
comparison order.</li>
<li>If the priority of a task changes, how do you move it to a new position in
the heap?</li>
<li>Or if a pending task needs to be deleted, how do you find it and remove it
from the queue?</li>
</ul>
<p>A solution to the first two challenges is to store entries as 3-element list
including the priority, an entry count, and the task.  The entry count serves as
a tie-breaker so that two tasks with the same priority are returned in the order
they were added. And since no two entry counts are the same, the tuple
comparison will never attempt to directly compare two tasks.</p>
<p>The remaining challenges revolve around finding a pending task and making
changes to its priority or removing it entirely.  Finding a task can be done
with a dictionary pointing to an entry in the queue.</p>
<p>Removing the entry or changing its priority is more difficult because it would
break the heap structure invariants.  So, a possible solution is to mark the
existing entry as removed and add a new entry with the revised priority:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">pq</span> <span class="o">=</span> <span class="p">[]</span>                         <span class="c"># list of entries arranged in a heap</span>
<span class="n">entry_finder</span> <span class="o">=</span> <span class="p">{}</span>               <span class="c"># mapping of tasks to entries</span>
<span class="n">REMOVED</span> <span class="o">=</span> <span class="s">&#39;&lt;removed-task&gt;&#39;</span>      <span class="c"># placeholder for a removed task</span>
<span class="n">counter</span> <span class="o">=</span> <span class="n">itertools</span><span class="o">.</span><span class="n">count</span><span class="p">()</span>     <span class="c"># unique sequence count</span>

<span class="k">def</span> <span class="nf">add_task</span><span class="p">(</span><span class="n">task</span><span class="p">,</span> <span class="n">priority</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
    <span class="s">&#39;Add a new task or update the priority of an existing task&#39;</span>
    <span class="k">if</span> <span class="n">task</span> <span class="ow">in</span> <span class="n">entry_finder</span><span class="p">:</span>
        <span class="n">remove_task</span><span class="p">(</span><span class="n">task</span><span class="p">)</span>
    <span class="n">count</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="n">counter</span><span class="p">)</span>
    <span class="n">entry</span> <span class="o">=</span> <span class="p">[</span><span class="n">priority</span><span class="p">,</span> <span class="n">count</span><span class="p">,</span> <span class="n">task</span><span class="p">]</span>
    <span class="n">entry_finder</span><span class="p">[</span><span class="n">task</span><span class="p">]</span> <span class="o">=</span> <span class="n">entry</span>
    <span class="n">heappush</span><span class="p">(</span><span class="n">pq</span><span class="p">,</span> <span class="n">entry</span><span class="p">)</span>

<span class="k">def</span> <span class="nf">remove_task</span><span class="p">(</span><span class="n">task</span><span class="p">):</span>
    <span class="s">&#39;Mark an existing task as REMOVED.  Raise KeyError if not found.&#39;</span>
    <span class="n">entry</span> <span class="o">=</span> <span class="n">entry_finder</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="n">task</span><span class="p">)</span>
    <span class="n">entry</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">REMOVED</span>

<span class="k">def</span> <span class="nf">pop_task</span><span class="p">():</span>
    <span class="s">&#39;Remove and return the lowest priority task. Raise KeyError if empty.&#39;</span>
    <span class="k">while</span> <span class="n">pq</span><span class="p">:</span>
        <span class="n">priority</span><span class="p">,</span> <span class="n">count</span><span class="p">,</span> <span class="n">task</span> <span class="o">=</span> <span class="n">heappop</span><span class="p">(</span><span class="n">pq</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">task</span> <span class="ow">is</span> <span class="ow">not</span> <span class="n">REMOVED</span><span class="p">:</span>
            <span class="k">del</span> <span class="n">entry_finder</span><span class="p">[</span><span class="n">task</span><span class="p">]</span>
            <span class="k">return</span> <span class="n">task</span>
    <span class="k">raise</span> <span class="ne">KeyError</span><span class="p">(</span><span class="s">&#39;pop from an empty priority queue&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="theory">
<h2>8.4.3. Theory<a class="headerlink" href="#theory" title="Permalink to this headline">¶</a></h2>
<p>Heaps are arrays for which <tt class="docutils literal"><span class="pre">a[k]</span> <span class="pre">&lt;=</span> <span class="pre">a[2*k+1]</span></tt> and <tt class="docutils literal"><span class="pre">a[k]</span> <span class="pre">&lt;=</span> <span class="pre">a[2*k+2]</span></tt> for all
<em>k</em>, counting elements from 0.  For the sake of comparison, non-existing
elements are considered to be infinite.  The interesting property of a heap is
that <tt class="docutils literal"><span class="pre">a[0]</span></tt> is always its smallest element.</p>
<p>The strange invariant above is meant to be an efficient memory representation
for a tournament.  The numbers below are <em>k</em>, not <tt class="docutils literal"><span class="pre">a[k]</span></tt>:</p>
<div class="highlight-python"><pre>                               0

              1                                 2

      3               4                5               6

  7       8       9       10      11      12      13      14

15 16   17 18   19 20   21 22   23 24   25 26   27 28   29 30</pre>
</div>
<p>In the tree above, each cell <em>k</em> is topping <tt class="docutils literal"><span class="pre">2*k+1</span></tt> and <tt class="docutils literal"><span class="pre">2*k+2</span></tt>. In an usual
binary tournament we see in sports, each cell is the winner over the two cells
it tops, and we can trace the winner down the tree to see all opponents s/he
had.  However, in many computer applications of such tournaments, we do not need
to trace the history of a winner. To be more memory efficient, when a winner is
promoted, we try to replace it by something else at a lower level, and the rule
becomes that a cell and the two cells it tops contain three different items, but
the top cell &#8220;wins&#8221; over the two topped cells.</p>
<p>If this heap invariant is protected at all time, index 0 is clearly the overall
winner.  The simplest algorithmic way to remove it and find the &#8220;next&#8221; winner is
to move some loser (let&#8217;s say cell 30 in the diagram above) into the 0 position,
and then percolate this new 0 down the tree, exchanging values, until the
invariant is re-established. This is clearly logarithmic on the total number of
items in the tree. By iterating over all items, you get an O(n log n) sort.</p>
<p>A nice feature of this sort is that you can efficiently insert new items while
the sort is going on, provided that the inserted items are not &#8220;better&#8221; than the
last 0&#8217;th element you extracted.  This is especially useful in simulation
contexts, where the tree holds all incoming events, and the &#8220;win&#8221; condition
means the smallest scheduled time.  When an event schedule other events for
execution, they are scheduled into the future, so they can easily go into the
heap.  So, a heap is a good structure for implementing schedulers (this is what
I used for my MIDI sequencer :-).</p>
<p>Various structures for implementing schedulers have been extensively studied,
and heaps are good for this, as they are reasonably speedy, the speed is almost
constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet
the worst cases might be terrible.</p>
<p>Heaps are also very useful in big disk sorts.  You most probably all know that a
big sort implies producing &#8220;runs&#8221; (which are pre-sorted sequences, which size is
usually related to the amount of CPU memory), followed by a merging passes for
these runs, which merging is often very cleverly organised <a class="footnote-reference" href="#id2" id="id1">[1]</a>. It is very
important that the initial sort produces the longest runs possible.  Tournaments
are a good way to that.  If, using all the memory available to hold a
tournament, you replace and percolate items that happen to fit the current run,
you&#8217;ll produce runs which are twice the size of the memory for random input, and
much better for input fuzzily ordered.</p>
<p>Moreover, if you output the 0&#8217;th item on disk and get an input which may not fit
in the current tournament (because the value &#8220;wins&#8221; over the last output value),
it cannot fit in the heap, so the size of the heap decreases.  The freed memory
could be cleverly reused immediately for progressively building a second heap,
which grows at exactly the same rate the first heap is melting.  When the first
heap completely vanishes, you switch heaps and start a new run.  Clever and
quite effective!</p>
<p>In a word, heaps are useful memory structures to know.  I use them in a few
applications, and I think it is good to keep a &#8216;heap&#8217; module around. :-)</p>
<p class="rubric">Footnotes</p>
<table class="docutils footnote" frame="void" id="id2" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id1">[1]</a></td><td>The disk balancing algorithms which are current, nowadays, are more annoying
than clever, and this is a consequence of the seeking capabilities of the disks.
On devices which cannot seek, like big tape drives, the story was quite
different, and one had to be very clever to ensure (far in advance) that each
tape movement will be the most effective possible (that is, will best
participate at &#8220;progressing&#8221; the merge).  Some tapes were even able to read
backwards, and this was also used to avoid the rewinding time. Believe me, real
good tape sorts were quite spectacular to watch! From all times, sorting has
always been a Great Art! :-)</td></tr>
</tbody>
</table>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar">
        <div class="sphinxsidebarwrapper">
  <h3><a href="../contents.html">Table Of Contents</a></h3>
  <ul>
<li><a class="reference internal" href="#">8.4. <tt class="docutils literal"><span class="pre">heapq</span></tt> &#8212; Heap queue algorithm</a><ul>
<li><a class="reference internal" href="#basic-examples">8.4.1. Basic Examples</a></li>
<li><a class="reference internal" href="#priority-queue-implementation-notes">8.4.2. Priority Queue Implementation Notes</a></li>
<li><a class="reference internal" href="#theory">8.4.3. Theory</a></li>
</ul>
</li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="collections.html"
                        title="previous chapter">8.3. <tt class="docutils literal"><span class="pre">collections</span></tt> &#8212; High-performance container datatypes</a></p>
  <h4>Next topic</h4>
  <p class="topless"><a href="bisect.html"
                        title="next chapter">8.5. <tt class="docutils literal"><span class="pre">bisect</span></tt> &#8212; Array bisection algorithm</a></p>
<h3>This Page</h3>
<ul class="this-page-menu">
  <li><a href="../bugs.html">Report a Bug</a></li>
  <li><a href="../_sources/library/heapq.txt"
         rel="nofollow">Show Source</a></li>
</ul>

<div id="searchbox" style="display: none">
  <h3>Quick search</h3>
    <form class="search" action="../search.html" method="get">
      <input type="text" name="q" />
      <input type="submit" value="Go" />
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
    <p class="searchtip" style="font-size: 90%">
    Enter search terms or a module, class or function name.
    </p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li class="right" >
          <a href="bisect.html" title="8.5. bisect — Array bisection algorithm"
             >next</a> |</li>
        <li class="right" >
          <a href="collections.html" title="8.3. collections — High-performance container datatypes"
             >previous</a> |</li>
        <li><img src="../_static/py.png" alt=""
                 style="vertical-align: middle; margin-top: -1px"/></li>
        <li><a href="http://www.python.org/">Python</a> &raquo;</li>
        <li>
          <a href="../index.html">Python 2.7.5 documentation</a> &raquo;
        </li>

          <li><a href="index.html" >The Python Standard Library</a> &raquo;</li>
          <li><a href="datatypes.html" >8. Data Types</a> &raquo;</li> 
      </ul>
    </div>
    <div class="footer">
    &copy; <a href="../copyright.html">Copyright</a> 1990-2019, Python Software Foundation.
    <br />
    The Python Software Foundation is a non-profit corporation.
    <a href="http://www.python.org/psf/donations/">Please donate.</a>
    <br />
    Last updated on Jul 03, 2019.
    <a href="../bugs.html">Found a bug</a>?
    <br />
    Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.3.
    </div>

  </body>
</html>

Filemanager

Name Type Size Permission Actions
2to3.html File 49.27 KB 0644
__builtin__.html File 10.26 KB 0644
__future__.html File 13.79 KB 0644
__main__.html File 7.05 KB 0644
_winreg.html File 59.21 KB 0644
abc.html File 23.9 KB 0644
aepack.html File 13.16 KB 0644
aetools.html File 14.91 KB 0644
aetypes.html File 18.88 KB 0644
aifc.html File 22.4 KB 0644
al.html File 17.34 KB 0644
allos.html File 33.72 KB 0644
anydbm.html File 16.33 KB 0644
archiving.html File 9.26 KB 0644
argparse.html File 237.62 KB 0644
array.html File 29.29 KB 0644
ast.html File 34.98 KB 0644
asynchat.html File 31.43 KB 0644
asyncore.html File 36.51 KB 0644
atexit.html File 16.8 KB 0644
audioop.html File 31.36 KB 0644
autogil.html File 8.19 KB 0644
base64.html File 19.67 KB 0644
basehttpserver.html File 34.04 KB 0644
bastion.html File 11.04 KB 0644
bdb.html File 36.68 KB 0644
binascii.html File 20.67 KB 0644
binhex.html File 10.58 KB 0644
bisect.html File 23.24 KB 0644
bsddb.html File 26.43 KB 0644
bz2.html File 26.08 KB 0644
calendar.html File 37.79 KB 0644
carbon.html File 48.94 KB 0644
cd.html File 27.96 KB 0644
cgi.html File 49.92 KB 0644
cgihttpserver.html File 13.1 KB 0644
cgitb.html File 11.41 KB 0644
chunk.html File 14.66 KB 0644
cmath.html File 25.63 KB 0644
cmd.html File 26.09 KB 0644
code.html File 24.58 KB 0644
codecs.html File 100.64 KB 0644
codeop.html File 14.84 KB 0644
collections.html File 133.96 KB 0644
colorpicker.html File 7.52 KB 0644
colorsys.html File 11.04 KB 0644
commands.html File 14.36 KB 0644
compileall.html File 16.83 KB 0644
compiler.html File 67.75 KB 0644
configparser.html File 62.13 KB 0644
constants.html File 12.83 KB 0644
contextlib.html File 19.39 KB 0644
cookie.html File 39.07 KB 0644
cookielib.html File 83.82 KB 0644
copy.html File 12.19 KB 0644
copy_reg.html File 13.76 KB 0644
crypt.html File 10.04 KB 0644
crypto.html File 7.59 KB 0644
csv.html File 67.37 KB 0644
ctypes.html File 238.78 KB 0644
curses.ascii.html File 22.29 KB 0644
curses.html File 146.63 KB 0644
curses.panel.html File 14.39 KB 0644
custominterp.html File 7.62 KB 0644
datatypes.html File 16.84 KB 0644
datetime.html File 226.59 KB 0644
dbhash.html File 15.48 KB 0644
dbm.html File 12.07 KB 0644
debug.html File 10.15 KB 0644
decimal.html File 194.44 KB 0644
development.html File 14.17 KB 0644
difflib.html File 84.83 KB 0644
dircache.html File 11.41 KB 0644
dis.html File 69.95 KB 0644
distutils.html File 8.05 KB 0644
dl.html File 16.33 KB 0644
doctest.html File 165.54 KB 0644
docxmlrpcserver.html File 16.43 KB 0644
dumbdbm.html File 14.02 KB 0644
dummy_thread.html File 9.43 KB 0644
dummy_threading.html File 8.37 KB 0644
easydialogs.html File 30.55 KB 0644
email-examples.html File 45.65 KB 0644
email.charset.html File 26.8 KB 0644
email.encoders.html File 11.86 KB 0644
email.errors.html File 15.77 KB 0644
email.generator.html File 20.77 KB 0644
email.header.html File 26.92 KB 0644
email.html File 44.24 KB 0644
email.iterators.html File 11.52 KB 0644
email.message.html File 63.16 KB 0644
email.mime.html File 27.93 KB 0644
email.parser.html File 30.45 KB 0644
email.util.html File 24.46 KB 0644
errno.html File 37.99 KB 0644
exceptions.html File 56.13 KB 0644
fcntl.html File 22.67 KB 0644
filecmp.html File 22.3 KB 0644
fileformats.html File 9.14 KB 0644
fileinput.html File 24.28 KB 0644
filesys.html File 10.2 KB 0644
fl.html File 49.92 KB 0644
fm.html File 11.91 KB 0644
fnmatch.html File 14.58 KB 0644
formatter.html File 34.06 KB 0644
fpectl.html File 16.01 KB 0644
fpformat.html File 10.59 KB 0644
fractions.html File 22.61 KB 0644
framework.html File 33.34 KB 0644
frameworks.html File 7.14 KB 0644
ftplib.html File 43.99 KB 0644
functions.html File 183.14 KB 0644
functools.html File 27.17 KB 0644
future_builtins.html File 13.04 KB 0644
gc.html File 25.75 KB 0644
gdbm.html File 15.96 KB 0644
gensuitemodule.html File 11.51 KB 0644
getopt.html File 23.66 KB 0644
getpass.html File 10.65 KB 0644
gettext.html File 78.76 KB 0644
gl.html File 22.09 KB 0644
glob.html File 13.26 KB 0644
grp.html File 10.49 KB 0644
gzip.html File 18.99 KB 0644
hashlib.html File 18.2 KB 0644
heapq.html File 31.61 KB 0644
hmac.html File 10.46 KB 0644
hotshot.html File 18.65 KB 0644
htmllib.html File 25.32 KB 0644
htmlparser.html File 39.11 KB 0644
httplib.html File 62.95 KB 0644
i18n.html File 9.52 KB 0644
ic.html File 17.17 KB 0644
idle.html File 20.9 KB 0644
imageop.html File 14.76 KB 0644
imaplib.html File 51.99 KB 0644
imgfile.html File 11.71 KB 0644
imghdr.html File 11.3 KB 0644
imp.html File 34.34 KB 0644
importlib.html File 8.26 KB 0644
imputil.html File 31.81 KB 0644
index.html File 72.78 KB 0644
inspect.html File 50.71 KB 0644
internet.html File 24.87 KB 0644
intro.html File 8.93 KB 0644
io.html File 98.13 KB 0644
ipc.html File 13.41 KB 0644
itertools.html File 115.91 KB 0644
jpeg.html File 12.74 KB 0644
json.html File 67.04 KB 0644
keyword.html File 7.68 KB 0644
language.html File 11.03 KB 0644
linecache.html File 10.59 KB 0644
locale.html File 55.14 KB 0644
logging.config.html File 63.36 KB 0644
logging.handlers.html File 69.64 KB 0644
logging.html File 95.64 KB 0644
mac.html File 21.79 KB 0644
macos.html File 14.76 KB 0644
macosa.html File 12.96 KB 0644
macostools.html File 15.52 KB 0644
macpath.html File 7.76 KB 0644
mailbox.html File 156.75 KB 0644
mailcap.html File 13.21 KB 0644
markup.html File 18.77 KB 0644
marshal.html File 17.98 KB 0644
math.html File 39.24 KB 0644
md5.html File 13.97 KB 0644
mhlib.html File 21.54 KB 0644
mimetools.html File 19.25 KB 0644
mimetypes.html File 28.39 KB 0644
mimewriter.html File 15.02 KB 0644
mimify.html File 13.36 KB 0644
miniaeframe.html File 12.2 KB 0644
misc.html File 6.87 KB 0644
mm.html File 9.03 KB 0644
mmap.html File 28.36 KB 0644
modulefinder.html File 15.31 KB 0644
modules.html File 8.46 KB 0644
msilib.html File 52.43 KB 0644
msvcrt.html File 19.37 KB 0644
multifile.html File 24.3 KB 0644
multiprocessing.html File 365.71 KB 0644
mutex.html File 11.23 KB 0644
netdata.html File 16.98 KB 0644
netrc.html File 12.3 KB 0644
new.html File 12.12 KB 0644
nis.html File 10.64 KB 0644
nntplib.html File 41.92 KB 0644
numbers.html File 37.75 KB 0644
numeric.html File 13.55 KB 0644
operator.html File 82 KB 0644
optparse.html File 222.56 KB 0644
os.html File 214.25 KB 0644
os.path.html File 38.34 KB 0644
ossaudiodev.html File 41.5 KB 0644
othergui.html File 9.08 KB 0644
parser.html File 39.36 KB 0644
pdb.html File 33.96 KB 0644
persistence.html File 14.87 KB 0644
pickle.html File 102.27 KB 0644
pickletools.html File 10.63 KB 0644
pipes.html File 18.01 KB 0644
pkgutil.html File 25.11 KB 0644
platform.html File 28.37 KB 0644
plistlib.html File 17.03 KB 0644
popen2.html File 25.43 KB 0644
poplib.html File 22.32 KB 0644
posix.html File 14.41 KB 0644
posixfile.html File 19.76 KB 0644
pprint.html File 29.92 KB 0644
profile.html File 63.56 KB 0644
pty.html File 9.48 KB 0644
pwd.html File 11.43 KB 0644
py_compile.html File 11.12 KB 0644
pyclbr.html File 14.71 KB 0644
pydoc.html File 11.48 KB 0644
pyexpat.html File 71.53 KB 0644
python.html File 12.27 KB 0644
queue.html File 24.22 KB 0644
quopri.html File 11.9 KB 0644
random.html File 37.83 KB 0644
re.html File 134.74 KB 0644
readline.html File 28.24 KB 0644
repr.html File 20.43 KB 0644
resource.html File 26.48 KB 0644
restricted.html File 11.65 KB 0644
rexec.html File 37.41 KB 0644
rfc822.html File 42.22 KB 0644
rlcompleter.html File 13.51 KB 0644
robotparser.html File 12.27 KB 0644
runpy.html File 19.34 KB 0644
sched.html File 18.54 KB 0644
scrolledtext.html File 9.32 KB 0644
select.html File 39.67 KB 0644
sets.html File 36.92 KB 0644
sgi.html File 9.71 KB 0644
sgmllib.html File 30.77 KB 0644
sha.html File 12.09 KB 0644
shelve.html File 27.02 KB 0644
shlex.html File 32.1 KB 0644
shutil.html File 40.22 KB 0644
signal.html File 31.14 KB 0644
simplehttpserver.html File 18.41 KB 0644
simplexmlrpcserver.html File 31.39 KB 0644
site.html File 23.64 KB 0644
smtpd.html File 12.46 KB 0644
smtplib.html File 42.13 KB 0644
sndhdr.html File 10.02 KB 0644
socket.html File 106.34 KB 0644
socketserver.html File 59.83 KB 0644
someos.html File 15.11 KB 0644
spwd.html File 10.33 KB 0644
sqlite3.html File 139.5 KB 0644
ssl.html File 65.62 KB 0644
stat.html File 32.31 KB 0644
statvfs.html File 10.6 KB 0644
stdtypes.html File 260.4 KB 0644
string.html File 106.65 KB 0644
stringio.html File 18.81 KB 0644
stringprep.html File 16.13 KB 0644
strings.html File 14.93 KB 0644
struct.html File 40.88 KB 0644
subprocess.html File 84.91 KB 0644
sun.html File 6.84 KB 0644
sunau.html File 27.1 KB 0644
sunaudio.html File 17.79 KB 0644
symbol.html File 7.66 KB 0644
symtable.html File 22.94 KB 0644
sys.html File 98.7 KB 0644
sysconfig.html File 23.84 KB 0644
syslog.html File 17.92 KB 0644
tabnanny.html File 10.63 KB 0644
tarfile.html File 78.68 KB 0644
telnetlib.html File 25.48 KB 0644
tempfile.html File 29.42 KB 0644
termios.html File 16.01 KB 0644
test.html File 52.62 KB 0644
textwrap.html File 27.25 KB 0644
thread.html File 20.47 KB 0644
threading.html File 76.69 KB 0644
time.html File 56.93 KB 0644
timeit.html File 36.27 KB 0644
tix.html File 46.96 KB 0644
tk.html File 23.64 KB 0644
tkinter.html File 67.67 KB 0644
token.html File 19.62 KB 0644
tokenize.html File 18.45 KB 0644
trace.html File 25.54 KB 0644
traceback.html File 33.44 KB 0644
ttk.html File 101.75 KB 0644
tty.html File 9.06 KB 0644
turtle.html File 211.74 KB 0644
types.html File 27.59 KB 0644
undoc.html File 23.16 KB 0644
unicodedata.html File 18.55 KB 0644
unittest.html File 202.85 KB 0644
unix.html File 10.55 KB 0644
urllib.html File 58.68 KB 0644
urllib2.html File 100.58 KB 0644
urlparse.html File 40.41 KB 0644
user.html File 11.83 KB 0644
userdict.html File 29.73 KB 0644
uu.html File 11.03 KB 0644
uuid.html File 28.19 KB 0644
warnings.html File 46.6 KB 0644
wave.html File 22.22 KB 0644
weakref.html File 36.52 KB 0644
webbrowser.html File 23.07 KB 0644
whichdb.html File 8.85 KB 0644
windows.html File 9.33 KB 0644
winsound.html File 18.75 KB 0644
wsgiref.html File 81.04 KB 0644
xdrlib.html File 29.94 KB 0644
xml.dom.html File 89.04 KB 0644
xml.dom.minidom.html File 40.42 KB 0644
xml.dom.pulldom.html File 12.71 KB 0644
xml.etree.elementtree.html File 93.22 KB 0644
xml.html File 16.49 KB 0644
xml.sax.handler.html File 38.63 KB 0644
xml.sax.html File 20.22 KB 0644
xml.sax.reader.html File 39.09 KB 0644
xml.sax.utils.html File 14.26 KB 0644
xmlrpclib.html File 60.79 KB 0644
zipfile.html File 53.14 KB 0644
zipimport.html File 20.42 KB 0644
zlib.html File 25.46 KB 0644