# pendulum.tcl -- # # This demonstration illustrates how Tcl/Tk can be used to construct # simulations of physical systems. if {![info exists widgetDemo]} { error "This script should be run from the \"widget\" demo." } package require Tk set w .pendulum catch {destroy $w} toplevel $w wm title $w "Pendulum Animation Demonstration" wm iconname $w "pendulum" positionWindow $w label $w.msg -font $font -wraplength 4i -justify left -text "This demonstration shows how Tcl/Tk can be used to carry out animations that are linked to simulations of physical systems. In the left canvas is a graphical representation of the physical system itself, a simple pendulum, and in the right canvas is a graph of the phase space of the system, which is a plot of the angle (relative to the vertical) against the angular velocity. The pendulum bob may be repositioned by clicking and dragging anywhere on the left canvas." pack $w.msg ## See Code / Dismiss buttons set btns [addSeeDismiss $w.buttons $w] pack $btns -side bottom -fill x # Create some structural widgets pack [panedwindow $w.p] -fill both -expand 1 $w.p add [labelframe $w.p.l1 -text "Pendulum Simulation"] $w.p add [labelframe $w.p.l2 -text "Phase Space"] # Create the canvas containing the graphical representation of the # simulated system. canvas $w.c -width 320 -height 200 -background white -bd 2 -relief sunken $w.c create text 5 5 -anchor nw -text "Click to Adjust Bob Start Position" # Coordinates of these items don't matter; they will be set properly below $w.c create line 0 25 320 25 -tags plate -fill grey50 -width 2 $w.c create oval 155 20 165 30 -tags pivot -fill grey50 -outline {} $w.c create line 1 1 1 1 -tags rod -fill black -width 3 $w.c create oval 1 1 2 2 -tags bob -fill yellow -outline black pack $w.c -in $w.p.l1 -fill both -expand true # Create the canvas containing the phase space graph; this consists of # a line that gets gradually paler as it ages, which is an extremely # effective visual trick. canvas $w.k -width 320 -height 200 -background white -bd 2 -relief sunken $w.k create line 160 200 160 0 -fill grey75 -arrow last -tags y_axis $w.k create line 0 100 320 100 -fill grey75 -arrow last -tags x_axis for {set i 90} {$i>=0} {incr i -10} { # Coordinates of these items don't matter; they will be set properly below $w.k create line 0 0 1 1 -smooth true -tags graph$i -fill grey$i } # FIXME: UNICODE labels $w.k create text 0 0 -anchor ne -text "q" -font {Symbol 8} -tags label_theta $w.k create text 0 0 -anchor ne -text "dq" -font {Symbol 8} -tags label_dtheta pack $w.k -in $w.p.l2 -fill both -expand true # Initialize some variables set points {} set Theta 45.0 set dTheta 0.0 set pi 3.1415926535897933 set length 150 set home 160 # This procedure makes the pendulum appear at the correct place on the # canvas. If the additional arguments "at $x $y" are passed (the 'at' # is really just syntactic sugar) instead of computing the position of # the pendulum from the length of the pendulum rod and its angle, the # length and angle are computed in reverse from the given location # (which is taken to be the centre of the pendulum bob.) proc showPendulum {canvas {at {}} {x {}} {y {}}} { global Theta dTheta pi length home if {$at eq "at" && ($x!=$home || $y!=25)} { set dTheta 0.0 set x2 [expr {$x - $home}] set y2 [expr {$y - 25}] set length [expr {hypot($x2, $y2)}] set Theta [expr {atan2($x2, $y2) * 180/$pi}] } else { set angle [expr {$Theta * $pi/180}] set x [expr {$home + $length*sin($angle)}] set y [expr {25 + $length*cos($angle)}] } $canvas coords rod $home 25 $x $y $canvas coords bob \ [expr {$x-15}] [expr {$y-15}] [expr {$x+15}] [expr {$y+15}] } showPendulum $w.c # Update the phase-space graph according to the current angle and the # rate at which the angle is changing (the first derivative with # respect to time.) proc showPhase {canvas} { global Theta dTheta points psw psh lappend points [expr {$Theta+$psw}] [expr {-20*$dTheta+$psh}] if {[llength $points] > 100} { set points [lrange $points end-99 end] } for {set i 0} {$i<100} {incr i 10} { set list [lrange $points end-[expr {$i-1}] end-[expr {$i-12}]] if {[llength $list] >= 4} { $canvas coords graph$i $list } } } # Set up some bindings on the canvases. Note that when the user # clicks we stop the animation until they release the mouse # button. Also note that both canvases are sensitive to <Configure> # events, which allows them to find out when they have been resized by # the user. bind $w.c <Destroy> { after cancel $animationCallbacks(pendulum) unset animationCallbacks(pendulum) } bind $w.c <1> { after cancel $animationCallbacks(pendulum) showPendulum %W at %x %y } bind $w.c <B1-Motion> { showPendulum %W at %x %y } bind $w.c <ButtonRelease-1> { showPendulum %W at %x %y set animationCallbacks(pendulum) [after 15 repeat [winfo toplevel %W]] } bind $w.c <Configure> { %W coords plate 0 25 %w 25 set home [expr %w/2] %W coords pivot [expr $home-5] 20 [expr $home+5] 30 } bind $w.k <Configure> { set psh [expr %h/2] set psw [expr %w/2] %W coords x_axis 2 $psh [expr %w-2] $psh %W coords y_axis $psw [expr %h-2] $psw 2 %W coords label_dtheta [expr $psw-4] 6 %W coords label_theta [expr %w-6] [expr $psh+4] } # This procedure is the "business" part of the simulation that does # simple numerical integration of the formula for a simple rotational # pendulum. proc recomputeAngle {} { global Theta dTheta pi length set scaling [expr {3000.0/$length/$length}] # To estimate the integration accurately, we really need to # compute the end-point of our time-step. But to do *that*, we # need to estimate the integration accurately! So we try this # technique, which is inaccurate, but better than doing it in a # single step. What we really want is bound up in the # differential equation: # .. - sin theta # theta + theta = ----------- # length # But my math skills are not good enough to solve this! # first estimate set firstDDTheta [expr {-sin($Theta * $pi/180)*$scaling}] set midDTheta [expr {$dTheta + $firstDDTheta}] set midTheta [expr {$Theta + ($dTheta + $midDTheta)/2}] # second estimate set midDDTheta [expr {-sin($midTheta * $pi/180)*$scaling}] set midDTheta [expr {$dTheta + ($firstDDTheta + $midDDTheta)/2}] set midTheta [expr {$Theta + ($dTheta + $midDTheta)/2}] # Now we do a double-estimate approach for getting the final value # first estimate set midDDTheta [expr {-sin($midTheta * $pi/180)*$scaling}] set lastDTheta [expr {$midDTheta + $midDDTheta}] set lastTheta [expr {$midTheta + ($midDTheta + $lastDTheta)/2}] # second estimate set lastDDTheta [expr {-sin($lastTheta * $pi/180)*$scaling}] set lastDTheta [expr {$midDTheta + ($midDDTheta + $lastDDTheta)/2}] set lastTheta [expr {$midTheta + ($midDTheta + $lastDTheta)/2}] # Now put the values back in our globals set dTheta $lastDTheta set Theta $lastTheta } # This method ties together the simulation engine and the graphical # display code that visualizes it. proc repeat w { global animationCallbacks # Simulate recomputeAngle # Update the display showPendulum $w.c showPhase $w.k # Reschedule ourselves set animationCallbacks(pendulum) [after 15 [list repeat $w]] } # Start the simulation after a short pause set animationCallbacks(pendulum) [after 500 [list repeat $w]]
Name | Type | Size | Permission | Actions |
---|---|---|---|---|
images | Folder | 0755 |
|
|
README | File | 2.03 KB | 0644 |
|
anilabel.tcl | File | 6.51 KB | 0644 |
|
aniwave.tcl | File | 3.41 KB | 0644 |
|
arrow.tcl | File | 7.8 KB | 0644 |
|
bind.tcl | File | 2.87 KB | 0644 |
|
bitmap.tcl | File | 1.38 KB | 0644 |
|
browse | File | 1.72 KB | 0755 |
|
button.tcl | File | 1.47 KB | 0644 |
|
check.tcl | File | 2.22 KB | 0644 |
|
clrpick.tcl | File | 1.4 KB | 0644 |
|
colors.tcl | File | 4.88 KB | 0644 |
|
combo.tcl | File | 1.94 KB | 0644 |
|
cscroll.tcl | File | 3.31 KB | 0644 |
|
ctext.tcl | File | 4.76 KB | 0644 |
|
dialog1.tcl | File | 660 B | 0644 |
|
dialog2.tcl | File | 613 B | 0644 |
|
en.msg | File | 3.8 KB | 0644 |
|
entry1.tcl | File | 1.35 KB | 0644 |
|
entry2.tcl | File | 2.06 KB | 0644 |
|
entry3.tcl | File | 5.95 KB | 0644 |
|
filebox.tcl | File | 2.2 KB | 0644 |
|
floor.tcl | File | 77.24 KB | 0644 |
|
form.tcl | File | 1.02 KB | 0644 |
|
goldberg.tcl | File | 55.23 KB | 0644 |
|
hello | File | 512 B | 0755 |
|
hscale.tcl | File | 1.46 KB | 0644 |
|
icon.tcl | File | 2.01 KB | 0644 |
|
image1.tcl | File | 1002 B | 0644 |
|
image2.tcl | File | 3.28 KB | 0644 |
|
items.tcl | File | 9.5 KB | 0644 |
|
ixset | File | 7.91 KB | 0755 |
|
knightstour.tcl | File | 8.38 KB | 0644 |
|
label.tcl | File | 1.29 KB | 0644 |
|
labelframe.tcl | File | 1.8 KB | 0644 |
|
license.terms | File | 2.16 KB | 0644 |
|
mclist.tcl | File | 3.89 KB | 0644 |
|
menu.tcl | File | 6.57 KB | 0644 |
|
menubu.tcl | File | 4.37 KB | 0644 |
|
msgbox.tcl | File | 1.98 KB | 0644 |
|
nl.msg | File | 6.61 KB | 0644 |
|
paned1.tcl | File | 1.08 KB | 0644 |
|
paned2.tcl | File | 2.18 KB | 0644 |
|
pendulum.tcl | File | 7.46 KB | 0644 |
|
plot.tcl | File | 2.69 KB | 0644 |
|
puzzle.tcl | File | 2.54 KB | 0644 |
|
radio.tcl | File | 2.69 KB | 0644 |
|
rmt | File | 5.22 KB | 0755 |
|
rolodex | File | 8.11 KB | 0755 |
|
ruler.tcl | File | 5.09 KB | 0644 |
|
sayings.tcl | File | 2.21 KB | 0644 |
|
search.tcl | File | 4.29 KB | 0644 |
|
spin.tcl | File | 1.78 KB | 0644 |
|
states.tcl | File | 1.63 KB | 0644 |
|
style.tcl | File | 6.78 KB | 0644 |
|
tclIndex | File | 4.25 KB | 0644 |
|
tcolor | File | 10.99 KB | 0755 |
|
text.tcl | File | 3.34 KB | 0644 |
|
textpeer.tcl | File | 2.13 KB | 0644 |
|
timer | File | 1.09 KB | 0755 |
|
toolbar.tcl | File | 3.19 KB | 0644 |
|
tree.tcl | File | 3.29 KB | 0644 |
|
ttkbut.tcl | File | 3.34 KB | 0644 |
|
ttkmenu.tcl | File | 2.35 KB | 0644 |
|
ttknote.tcl | File | 2.41 KB | 0644 |
|
ttkpane.tcl | File | 3.95 KB | 0644 |
|
ttkprogress.tcl | File | 1.52 KB | 0644 |
|
ttkscale.tcl | File | 1.39 KB | 0644 |
|
twind.tcl | File | 10.57 KB | 0644 |
|
unicodeout.tcl | File | 3.45 KB | 0644 |
|
vscale.tcl | File | 1.44 KB | 0644 |
|
widget | File | 22.83 KB | 0755 |
|